| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | fveq2 | ⊢ ( 𝑗  =  𝑛  →  ( 𝑤 ‘ 𝑗 )  =  ( 𝑤 ‘ 𝑛 ) ) | 
						
							| 4 | 3 | difeq1d | ⊢ ( 𝑗  =  𝑛  →  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  =  ( ( 𝑤 ‘ 𝑛 )  ∖   I  ) ) | 
						
							| 5 | 4 | dmeqd | ⊢ ( 𝑗  =  𝑛  →  dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  )  =  dom  ( ( 𝑤 ‘ 𝑛 )  ∖   I  ) ) | 
						
							| 6 | 5 | fveq2d | ⊢ ( 𝑗  =  𝑛  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) )  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑛 )  ∖   I  ) ) ) | 
						
							| 7 | 6 | cbvmptv | ⊢ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  =  ( 𝑛  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑛 )  ∖   I  ) ) ) | 
						
							| 8 | 1 2 7 | pmtrdifwrdellem1 | ⊢ ( 𝑤  ∈  Word  𝑇  →  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  ∈  Word  𝑅 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑤  ∈  Word  𝑇 )  →  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  ∈  Word  𝑅 ) | 
						
							| 10 | 1 2 7 | pmtrdifwrdellem2 | ⊢ ( 𝑤  ∈  Word  𝑇  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑤  ∈  Word  𝑇 )  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 12 | 1 2 7 | pmtrdifwrdel2lem1 | ⊢ ( ( 𝑤  ∈  Word  𝑇  ∧  𝐾  ∈  𝑁 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 13 | 12 | ancoms | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑤  ∈  Word  𝑇 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 14 | 1 2 7 | pmtrdifwrdellem3 | ⊢ ( 𝑤  ∈  Word  𝑇  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑤  ∈  Word  𝑇 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 16 |  | r19.26 | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 17 | 13 15 16 | sylanbrc | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑤  ∈  Word  𝑇 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ♯ ‘ 𝑢 )  =  ( ♯ ‘ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑢 )  ↔  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ) ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( 𝑢 ‘ 𝑖 )  =  ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 23 | 20 | fveq1d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) | 
						
							| 24 | 23 | eqeq2d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 )  ↔  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 25 | 24 | ralbidv | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) | 
						
							| 26 | 22 25 | anbi12d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) )  ↔  ( ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) | 
						
							| 28 | 19 27 | anbi12d | ⊢ ( 𝑢  =  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  →  ( ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑢 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) )  ↔  ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) ) | 
						
							| 29 | 28 | rspcev | ⊢ ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) )  ∈  Word  𝑅  ∧  ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑤 ‘ 𝑗 )  ∖   I  ) ) ) ‘ 𝑖 ) ‘ 𝑥 ) ) ) )  →  ∃ 𝑢  ∈  Word  𝑅 ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑢 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) | 
						
							| 30 | 9 11 17 29 | syl12anc | ⊢ ( ( 𝐾  ∈  𝑁  ∧  𝑤  ∈  Word  𝑇 )  →  ∃ 𝑢  ∈  Word  𝑅 ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑢 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 30 | ralrimiva | ⊢ ( 𝐾  ∈  𝑁  →  ∀ 𝑤  ∈  Word  𝑇 ∃ 𝑢  ∈  Word  𝑅 ( ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑢 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( ( 𝑢 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ∧  ∀ 𝑥  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑥 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑥 ) ) ) ) |