Metamath Proof Explorer


Theorem pmtrdifwrdel2

Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019)

Ref Expression
Hypotheses pmtrdifel.t T=ranpmTrspNK
pmtrdifel.r R=ranpmTrspN
Assertion pmtrdifwrdel2 KNwWordTuWordRw=ui0..^wuiK=KxNKwix=uix

Proof

Step Hyp Ref Expression
1 pmtrdifel.t T=ranpmTrspNK
2 pmtrdifel.r R=ranpmTrspN
3 fveq2 j=nwj=wn
4 3 difeq1d j=nwjI=wnI
5 4 dmeqd j=ndomwjI=domwnI
6 5 fveq2d j=npmTrspNdomwjI=pmTrspNdomwnI
7 6 cbvmptv j0..^wpmTrspNdomwjI=n0..^wpmTrspNdomwnI
8 1 2 7 pmtrdifwrdellem1 wWordTj0..^wpmTrspNdomwjIWordR
9 8 adantl KNwWordTj0..^wpmTrspNdomwjIWordR
10 1 2 7 pmtrdifwrdellem2 wWordTw=j0..^wpmTrspNdomwjI
11 10 adantl KNwWordTw=j0..^wpmTrspNdomwjI
12 1 2 7 pmtrdifwrdel2lem1 wWordTKNi0..^wj0..^wpmTrspNdomwjIiK=K
13 12 ancoms KNwWordTi0..^wj0..^wpmTrspNdomwjIiK=K
14 1 2 7 pmtrdifwrdellem3 wWordTi0..^wxNKwix=j0..^wpmTrspNdomwjIix
15 14 adantl KNwWordTi0..^wxNKwix=j0..^wpmTrspNdomwjIix
16 r19.26 i0..^wj0..^wpmTrspNdomwjIiK=KxNKwix=j0..^wpmTrspNdomwjIixi0..^wj0..^wpmTrspNdomwjIiK=Ki0..^wxNKwix=j0..^wpmTrspNdomwjIix
17 13 15 16 sylanbrc KNwWordTi0..^wj0..^wpmTrspNdomwjIiK=KxNKwix=j0..^wpmTrspNdomwjIix
18 fveq2 u=j0..^wpmTrspNdomwjIu=j0..^wpmTrspNdomwjI
19 18 eqeq2d u=j0..^wpmTrspNdomwjIw=uw=j0..^wpmTrspNdomwjI
20 fveq1 u=j0..^wpmTrspNdomwjIui=j0..^wpmTrspNdomwjIi
21 20 fveq1d u=j0..^wpmTrspNdomwjIuiK=j0..^wpmTrspNdomwjIiK
22 21 eqeq1d u=j0..^wpmTrspNdomwjIuiK=Kj0..^wpmTrspNdomwjIiK=K
23 20 fveq1d u=j0..^wpmTrspNdomwjIuix=j0..^wpmTrspNdomwjIix
24 23 eqeq2d u=j0..^wpmTrspNdomwjIwix=uixwix=j0..^wpmTrspNdomwjIix
25 24 ralbidv u=j0..^wpmTrspNdomwjIxNKwix=uixxNKwix=j0..^wpmTrspNdomwjIix
26 22 25 anbi12d u=j0..^wpmTrspNdomwjIuiK=KxNKwix=uixj0..^wpmTrspNdomwjIiK=KxNKwix=j0..^wpmTrspNdomwjIix
27 26 ralbidv u=j0..^wpmTrspNdomwjIi0..^wuiK=KxNKwix=uixi0..^wj0..^wpmTrspNdomwjIiK=KxNKwix=j0..^wpmTrspNdomwjIix
28 19 27 anbi12d u=j0..^wpmTrspNdomwjIw=ui0..^wuiK=KxNKwix=uixw=j0..^wpmTrspNdomwjIi0..^wj0..^wpmTrspNdomwjIiK=KxNKwix=j0..^wpmTrspNdomwjIix
29 28 rspcev j0..^wpmTrspNdomwjIWordRw=j0..^wpmTrspNdomwjIi0..^wj0..^wpmTrspNdomwjIiK=KxNKwix=j0..^wpmTrspNdomwjIixuWordRw=ui0..^wuiK=KxNKwix=uix
30 9 11 17 29 syl12anc KNwWordTuWordRw=ui0..^wuiK=KxNKwix=uix
31 30 ralrimiva KNwWordTuWordRw=ui0..^wuiK=KxNKwix=uix