Description: A sequence of transpositions of elements of a set without a special element corresponds to a sequence of transpositions of elements of the set not moving the special element. (Contributed by AV, 31-Jan-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pmtrdifel.t | |
|
pmtrdifel.r | |
||
Assertion | pmtrdifwrdel2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmtrdifel.t | |
|
2 | pmtrdifel.r | |
|
3 | fveq2 | |
|
4 | 3 | difeq1d | |
5 | 4 | dmeqd | |
6 | 5 | fveq2d | |
7 | 6 | cbvmptv | |
8 | 1 2 7 | pmtrdifwrdellem1 | |
9 | 8 | adantl | |
10 | 1 2 7 | pmtrdifwrdellem2 | |
11 | 10 | adantl | |
12 | 1 2 7 | pmtrdifwrdel2lem1 | |
13 | 12 | ancoms | |
14 | 1 2 7 | pmtrdifwrdellem3 | |
15 | 14 | adantl | |
16 | r19.26 | |
|
17 | 13 15 16 | sylanbrc | |
18 | fveq2 | |
|
19 | 18 | eqeq2d | |
20 | fveq1 | |
|
21 | 20 | fveq1d | |
22 | 21 | eqeq1d | |
23 | 20 | fveq1d | |
24 | 23 | eqeq2d | |
25 | 24 | ralbidv | |
26 | 22 25 | anbi12d | |
27 | 26 | ralbidv | |
28 | 19 27 | anbi12d | |
29 | 28 | rspcev | |
30 | 9 11 17 29 | syl12anc | |
31 | 30 | ralrimiva | |