| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prex |
|
| 2 |
|
eqid |
|
| 3 |
2
|
pmtrfval |
|
| 4 |
1 3
|
ax-mp |
|
| 5 |
|
1ex |
|
| 6 |
|
2nn0 |
|
| 7 |
|
1ne2 |
|
| 8 |
|
pr2pwpr |
|
| 9 |
5 6 7 8
|
mp3an |
|
| 10 |
9
|
mpteq1i |
|
| 11 |
|
elsni |
|
| 12 |
|
eleq2 |
|
| 13 |
12
|
biimpar |
|
| 14 |
13
|
iftrued |
|
| 15 |
|
elpri |
|
| 16 |
|
2ex |
|
| 17 |
16
|
unisn |
|
| 18 |
|
simpr |
|
| 19 |
|
sneq |
|
| 20 |
19
|
adantr |
|
| 21 |
18 20
|
difeq12d |
|
| 22 |
|
difprsn1 |
|
| 23 |
7 22
|
ax-mp |
|
| 24 |
21 23
|
eqtrdi |
|
| 25 |
24
|
unieqd |
|
| 26 |
|
iftrue |
|
| 27 |
26
|
adantr |
|
| 28 |
17 25 27
|
3eqtr4a |
|
| 29 |
28
|
ex |
|
| 30 |
5
|
unisn |
|
| 31 |
|
simpr |
|
| 32 |
|
sneq |
|
| 33 |
32
|
adantr |
|
| 34 |
31 33
|
difeq12d |
|
| 35 |
|
difprsn2 |
|
| 36 |
7 35
|
ax-mp |
|
| 37 |
34 36
|
eqtrdi |
|
| 38 |
37
|
unieqd |
|
| 39 |
7
|
nesymi |
|
| 40 |
|
eqeq1 |
|
| 41 |
39 40
|
mtbiri |
|
| 42 |
41
|
iffalsed |
|
| 43 |
42
|
adantr |
|
| 44 |
30 38 43
|
3eqtr4a |
|
| 45 |
44
|
ex |
|
| 46 |
29 45
|
jaoi |
|
| 47 |
15 46
|
syl |
|
| 48 |
47
|
impcom |
|
| 49 |
14 48
|
eqtrd |
|
| 50 |
11 49
|
sylan |
|
| 51 |
50
|
mpteq2dva |
|
| 52 |
51
|
mpteq2ia |
|
| 53 |
10 52
|
eqtri |
|
| 54 |
4 53
|
eqtri |
|