Metamath Proof Explorer


Theorem pmtrprfvalrn

Description: The range of the transpositions on a pair is actually a singleton: the transposition of the two elements of the pair. (Contributed by AV, 9-Dec-2018)

Ref Expression
Assertion pmtrprfvalrn ran pmTrsp 1 2 = 1 2 2 1

Proof

Step Hyp Ref Expression
1 pmtrprfval pmTrsp 1 2 = p 1 2 z 1 2 if z = 1 2 1
2 1 rneqi ran pmTrsp 1 2 = ran p 1 2 z 1 2 if z = 1 2 1
3 eqid p 1 2 z 1 2 if z = 1 2 1 = p 1 2 z 1 2 if z = 1 2 1
4 3 rnmpt ran p 1 2 z 1 2 if z = 1 2 1 = t | p 1 2 t = z 1 2 if z = 1 2 1
5 1ex 1 V
6 id 1 V 1 V
7 2nn 2
8 7 a1i 1 V 2
9 iftrue z = 1 if z = 1 2 1 = 2
10 9 adantl 1 V z = 1 if z = 1 2 1 = 2
11 1ne2 1 2
12 11 nesymi ¬ 2 = 1
13 eqeq1 z = 2 z = 1 2 = 1
14 12 13 mtbiri z = 2 ¬ z = 1
15 14 iffalsed z = 2 if z = 1 2 1 = 1
16 15 adantl 1 V z = 2 if z = 1 2 1 = 1
17 6 8 8 6 10 16 fmptpr 1 V 1 2 2 1 = z 1 2 if z = 1 2 1
18 17 eqeq2d 1 V t = 1 2 2 1 t = z 1 2 if z = 1 2 1
19 5 18 ax-mp t = 1 2 2 1 t = z 1 2 if z = 1 2 1
20 19 bicomi t = z 1 2 if z = 1 2 1 t = 1 2 2 1
21 20 rexbii p 1 2 t = z 1 2 if z = 1 2 1 p 1 2 t = 1 2 2 1
22 21 abbii t | p 1 2 t = z 1 2 if z = 1 2 1 = t | p 1 2 t = 1 2 2 1
23 prex 1 2 V
24 23 snnz 1 2
25 r19.9rzv 1 2 s = 1 2 2 1 p 1 2 s = 1 2 2 1
26 25 bicomd 1 2 p 1 2 s = 1 2 2 1 s = 1 2 2 1
27 24 26 ax-mp p 1 2 s = 1 2 2 1 s = 1 2 2 1
28 vex s V
29 eqeq1 t = s t = 1 2 2 1 s = 1 2 2 1
30 29 rexbidv t = s p 1 2 t = 1 2 2 1 p 1 2 s = 1 2 2 1
31 28 30 elab s t | p 1 2 t = 1 2 2 1 p 1 2 s = 1 2 2 1
32 velsn s 1 2 2 1 s = 1 2 2 1
33 27 31 32 3bitr4i s t | p 1 2 t = 1 2 2 1 s 1 2 2 1
34 33 eqriv t | p 1 2 t = 1 2 2 1 = 1 2 2 1
35 22 34 eqtri t | p 1 2 t = z 1 2 if z = 1 2 1 = 1 2 2 1
36 4 35 eqtri ran p 1 2 z 1 2 if z = 1 2 1 = 1 2 2 1
37 2 36 eqtri ran pmTrsp 1 2 = 1 2 2 1