Metamath Proof Explorer


Theorem pr2pwpr

Description: The set of subsets of a pair having length 2 is the set of the pair as singleton. (Contributed by AV, 9-Dec-2018)

Ref Expression
Assertion pr2pwpr AVBWABp𝒫AB|p2𝑜=AB

Proof

Step Hyp Ref Expression
1 elpwi s𝒫ABsAB
2 prfi ABFin
3 ssfi ABFinsABsFin
4 2 3 mpan sABsFin
5 hash2 2𝑜=2
6 5 eqcomi 2=2𝑜
7 6 a1i sFin2=2𝑜
8 7 eqeq2d sFins=2s=2𝑜
9 2onn 2𝑜ω
10 nnfi 2𝑜ω2𝑜Fin
11 9 10 ax-mp 2𝑜Fin
12 hashen sFin2𝑜Fins=2𝑜s2𝑜
13 11 12 mpan2 sFins=2𝑜s2𝑜
14 8 13 bitrd sFins=2s2𝑜
15 hash2pwpr s=2s𝒫ABs=AB
16 15 a1d s=2s𝒫ABAVBWABs=AB
17 16 ex s=2s𝒫ABAVBWABs=AB
18 14 17 syl6bir sFins2𝑜s𝒫ABAVBWABs=AB
19 18 com23 sFins𝒫ABs2𝑜AVBWABs=AB
20 4 19 syl sABs𝒫ABs2𝑜AVBWABs=AB
21 1 20 mpcom s𝒫ABs2𝑜AVBWABs=AB
22 21 imp s𝒫ABs2𝑜AVBWABs=AB
23 22 com12 AVBWABs𝒫ABs2𝑜s=AB
24 prex ABV
25 24 prid2 ABBAB
26 25 a1i AVBWABABBAB
27 26 olcd AVBWABABAABBAB
28 elun ABABABABAABBAB
29 27 28 sylibr AVBWABABABAB
30 pwpr 𝒫AB=ABAB
31 29 30 eleqtrrdi AVBWABAB𝒫AB
32 31 adantr AVBWABs=ABAB𝒫AB
33 eleq1 s=ABs𝒫ABAB𝒫AB
34 33 adantl AVBWABs=ABs𝒫ABAB𝒫AB
35 32 34 mpbird AVBWABs=ABs𝒫AB
36 enpr2 AVBWABAB2𝑜
37 36 adantr AVBWABs=ABAB2𝑜
38 breq1 s=ABs2𝑜AB2𝑜
39 38 adantl AVBWABs=ABs2𝑜AB2𝑜
40 37 39 mpbird AVBWABs=ABs2𝑜
41 35 40 jca AVBWABs=ABs𝒫ABs2𝑜
42 41 ex AVBWABs=ABs𝒫ABs2𝑜
43 23 42 impbid AVBWABs𝒫ABs2𝑜s=AB
44 breq1 p=sp2𝑜s2𝑜
45 44 elrab sp𝒫AB|p2𝑜s𝒫ABs2𝑜
46 velsn sABs=AB
47 43 45 46 3bitr4g AVBWABsp𝒫AB|p2𝑜sAB
48 47 eqrdv AVBWABp𝒫AB|p2𝑜=AB