| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | pmtrdifwrdel.0 | ⊢ 𝑈  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) ) ) | 
						
							| 4 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑖 )  ∈  𝑇 ) | 
						
							| 5 |  | eqid | ⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) )  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) | 
						
							| 6 | 1 2 5 | pmtrdifellem3 | ⊢ ( ( 𝑊 ‘ 𝑖 )  ∈  𝑇  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ‘ 𝑛 ) ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ‘ 𝑛 ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑥  =  𝑖  →  ( 𝑊 ‘ 𝑥 )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 9 | 8 | difeq1d | ⊢ ( 𝑥  =  𝑖  →  ( ( 𝑊 ‘ 𝑥 )  ∖   I  )  =  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) | 
						
							| 10 | 9 | dmeqd | ⊢ ( 𝑥  =  𝑖  →  dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  )  =  dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) | 
						
							| 11 | 10 | fveq2d | ⊢ ( 𝑥  =  𝑖  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) )  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 13 |  | fvexd | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) )  ∈  V ) | 
						
							| 14 | 3 11 12 13 | fvmptd3 | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑈 ‘ 𝑖 )  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ) | 
						
							| 15 | 14 | fveq1d | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ‘ 𝑛 ) ) | 
						
							| 16 | 15 | eqeq2d | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ‘ 𝑛 ) ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑖 )  ∖   I  ) ) ‘ 𝑛 ) ) ) | 
						
							| 18 | 7 17 | mpbird | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 19 | 18 | ralrimiva | ⊢ ( 𝑊  ∈  Word  𝑇  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  ( 𝑁  ∖  { 𝐾 } ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |