| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | pmtrdifwrdel.0 |  |-  U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) | 
						
							| 4 |  | wrdsymbcl |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) | 
						
							| 5 |  | eqid |  |-  ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) | 
						
							| 6 | 1 2 5 | pmtrdifellem3 |  |-  ( ( W ` i ) e. T -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) | 
						
							| 8 |  | fveq2 |  |-  ( x = i -> ( W ` x ) = ( W ` i ) ) | 
						
							| 9 | 8 | difeq1d |  |-  ( x = i -> ( ( W ` x ) \ _I ) = ( ( W ` i ) \ _I ) ) | 
						
							| 10 | 9 | dmeqd |  |-  ( x = i -> dom ( ( W ` x ) \ _I ) = dom ( ( W ` i ) \ _I ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( x = i -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) | 
						
							| 12 |  | simpr |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 13 |  | fvexd |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V ) | 
						
							| 14 | 3 11 12 13 | fvmptd3 |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) | 
						
							| 15 | 14 | fveq1d |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) ) | 
						
							| 17 | 16 | ralbidv |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` n ) ) ) | 
						
							| 18 | 7 17 | mpbird |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) | 
						
							| 19 | 18 | ralrimiva |  |-  ( W e. Word T -> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. ( N \ { K } ) ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) |