| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | pmtrdifwrdel.0 |  |-  U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) | 
						
							| 4 |  | simpr |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> i e. ( 0 ..^ ( # ` W ) ) ) | 
						
							| 5 |  | fvex |  |-  ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V | 
						
							| 6 |  | fveq2 |  |-  ( x = i -> ( W ` x ) = ( W ` i ) ) | 
						
							| 7 | 6 | difeq1d |  |-  ( x = i -> ( ( W ` x ) \ _I ) = ( ( W ` i ) \ _I ) ) | 
						
							| 8 | 7 | dmeqd |  |-  ( x = i -> dom ( ( W ` x ) \ _I ) = dom ( ( W ` i ) \ _I ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( x = i -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) | 
						
							| 10 | 9 3 | fvmptg |  |-  ( ( i e. ( 0 ..^ ( # ` W ) ) /\ ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) e. _V ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) | 
						
							| 11 | 4 5 10 | sylancl |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( U ` i ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ) | 
						
							| 12 | 11 | fveq1d |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` K ) = ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` K ) ) | 
						
							| 13 |  | wrdsymbcl |  |-  ( ( W e. Word T /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) | 
						
							| 14 | 13 | adantlr |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` i ) e. T ) | 
						
							| 15 |  | simplr |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> K e. N ) | 
						
							| 16 |  | eqid |  |-  ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) | 
						
							| 17 | 1 2 16 | pmtrdifellem4 |  |-  ( ( ( W ` i ) e. T /\ K e. N ) -> ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` K ) = K ) | 
						
							| 18 | 14 15 17 | syl2anc |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( ( pmTrsp ` N ) ` dom ( ( W ` i ) \ _I ) ) ` K ) = K ) | 
						
							| 19 | 12 18 | eqtrd |  |-  ( ( ( W e. Word T /\ K e. N ) /\ i e. ( 0 ..^ ( # ` W ) ) ) -> ( ( U ` i ) ` K ) = K ) | 
						
							| 20 | 19 | ralrimiva |  |-  ( ( W e. Word T /\ K e. N ) -> A. i e. ( 0 ..^ ( # ` W ) ) ( ( U ` i ) ` K ) = K ) |