| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | fveq2 |  |-  ( j = n -> ( w ` j ) = ( w ` n ) ) | 
						
							| 4 | 3 | difeq1d |  |-  ( j = n -> ( ( w ` j ) \ _I ) = ( ( w ` n ) \ _I ) ) | 
						
							| 5 | 4 | dmeqd |  |-  ( j = n -> dom ( ( w ` j ) \ _I ) = dom ( ( w ` n ) \ _I ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( j = n -> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( w ` n ) \ _I ) ) ) | 
						
							| 7 | 6 | cbvmptv |  |-  ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) = ( n e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` n ) \ _I ) ) ) | 
						
							| 8 | 1 2 7 | pmtrdifwrdellem1 |  |-  ( w e. Word T -> ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R ) | 
						
							| 9 | 1 2 7 | pmtrdifwrdellem2 |  |-  ( w e. Word T -> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) | 
						
							| 10 | 1 2 7 | pmtrdifwrdellem3 |  |-  ( w e. Word T -> A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) | 
						
							| 11 |  | fveq2 |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( # ` u ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) | 
						
							| 12 | 11 | eqeq2d |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( # ` w ) = ( # ` u ) <-> ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) ) ) | 
						
							| 13 |  | fveq1 |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( u ` i ) = ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ) | 
						
							| 14 | 13 | fveq1d |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( u ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) <-> ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) | 
						
							| 16 | 15 | 2ralbidv |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) <-> A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) | 
						
							| 17 | 12 16 | anbi12d |  |-  ( u = ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) -> ( ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) <-> ( ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) ) | 
						
							| 18 | 17 | rspcev |  |-  ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) e. Word R /\ ( ( # ` w ) = ( # ` ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( ( j e. ( 0 ..^ ( # ` w ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( w ` j ) \ _I ) ) ) ` i ) ` x ) ) ) -> E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) | 
						
							| 19 | 8 9 10 18 | syl12anc |  |-  ( w e. Word T -> E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) ) | 
						
							| 20 | 19 | rgen |  |-  A. w e. Word T E. u e. Word R ( ( # ` w ) = ( # ` u ) /\ A. i e. ( 0 ..^ ( # ` w ) ) A. x e. ( N \ { K } ) ( ( w ` i ) ` x ) = ( ( u ` i ) ` x ) ) |