| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t |  |-  T = ran ( pmTrsp ` ( N \ { K } ) ) | 
						
							| 2 |  | pmtrdifel.r |  |-  R = ran ( pmTrsp ` N ) | 
						
							| 3 |  | pmtrdifwrdel.0 |  |-  U = ( x e. ( 0 ..^ ( # ` W ) ) |-> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) ) | 
						
							| 4 |  | wrdsymbcl |  |-  ( ( W e. Word T /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. T ) | 
						
							| 5 |  | eqid |  |-  ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) = ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) | 
						
							| 6 | 1 2 5 | pmtrdifellem1 |  |-  ( ( W ` x ) e. T -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( W e. Word T /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R ) | 
						
							| 8 | 7 | ralrimiva |  |-  ( W e. Word T -> A. x e. ( 0 ..^ ( # ` W ) ) ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R ) | 
						
							| 9 | 3 | fnmpt |  |-  ( A. x e. ( 0 ..^ ( # ` W ) ) ( ( pmTrsp ` N ) ` dom ( ( W ` x ) \ _I ) ) e. R -> U Fn ( 0 ..^ ( # ` W ) ) ) | 
						
							| 10 |  | hashfn |  |-  ( U Fn ( 0 ..^ ( # ` W ) ) -> ( # ` U ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 11 | 8 9 10 | 3syl |  |-  ( W e. Word T -> ( # ` U ) = ( # ` ( 0 ..^ ( # ` W ) ) ) ) | 
						
							| 12 |  | lencl |  |-  ( W e. Word T -> ( # ` W ) e. NN0 ) | 
						
							| 13 |  | hashfzo0 |  |-  ( ( # ` W ) e. NN0 -> ( # ` ( 0 ..^ ( # ` W ) ) ) = ( # ` W ) ) | 
						
							| 14 | 12 13 | syl |  |-  ( W e. Word T -> ( # ` ( 0 ..^ ( # ` W ) ) ) = ( # ` W ) ) | 
						
							| 15 | 11 14 | eqtr2d |  |-  ( W e. Word T -> ( # ` W ) = ( # ` U ) ) |