| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pmtrdifel.t | ⊢ 𝑇  =  ran  ( pmTrsp ‘ ( 𝑁  ∖  { 𝐾 } ) ) | 
						
							| 2 |  | pmtrdifel.r | ⊢ 𝑅  =  ran  ( pmTrsp ‘ 𝑁 ) | 
						
							| 3 |  | pmtrdifwrdel.0 | ⊢ 𝑈  =  ( 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  ↦  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) ) ) | 
						
							| 4 |  | wrdsymbcl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ 𝑥 )  ∈  𝑇 ) | 
						
							| 5 |  | eqid | ⊢ ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) )  =  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) ) | 
						
							| 6 | 1 2 5 | pmtrdifellem1 | ⊢ ( ( 𝑊 ‘ 𝑥 )  ∈  𝑇  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) )  ∈  𝑅 ) | 
						
							| 7 | 4 6 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑇  ∧  𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) )  ∈  𝑅 ) | 
						
							| 8 | 7 | ralrimiva | ⊢ ( 𝑊  ∈  Word  𝑇  →  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) )  ∈  𝑅 ) | 
						
							| 9 | 3 | fnmpt | ⊢ ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( pmTrsp ‘ 𝑁 ) ‘ dom  ( ( 𝑊 ‘ 𝑥 )  ∖   I  ) )  ∈  𝑅  →  𝑈  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 |  | hashfn | ⊢ ( 𝑈  Fn  ( 0 ..^ ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 11 | 8 9 10 | 3syl | ⊢ ( 𝑊  ∈  Word  𝑇  →  ( ♯ ‘ 𝑈 )  =  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 12 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑇  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 13 |  | hashfzo0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  →  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 14 | 12 13 | syl | ⊢ ( 𝑊  ∈  Word  𝑇  →  ( ♯ ‘ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 15 | 11 14 | eqtr2d | ⊢ ( 𝑊  ∈  Word  𝑇  →  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) |