| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 2 |  | gsmsymgrfix.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | hasheq0 | ⊢ ( 𝑤  ∈  V  →  ( ( ♯ ‘ 𝑤 )  =  0  ↔  𝑤  =  ∅ ) ) | 
						
							| 4 | 3 | elv | ⊢ ( ( ♯ ‘ 𝑤 )  =  0  ↔  𝑤  =  ∅ ) | 
						
							| 5 | 4 | biimpri | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  0 ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑤  =  ∅  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ 0 ) ) | 
						
							| 7 |  | fzo0 | ⊢ ( 0 ..^ 0 )  =  ∅ | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ∅ ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤 ‘ 𝑖 )  =  ( ∅ ‘ 𝑖 ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 ) ) | 
						
							| 11 | 10 | eqeq1d | ⊢ ( 𝑤  =  ∅  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 12 | 8 11 | raleqbidv | ⊢ ( 𝑤  =  ∅  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  ∅ ) ) | 
						
							| 14 | 13 | fveq1d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 ) ) | 
						
							| 15 | 14 | eqeq1d | ⊢ ( 𝑤  =  ∅  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 16 | 12 15 | imbi12d | ⊢ ( 𝑤  =  ∅  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 )  ↔  ( ∀ 𝑖  ∈  ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 )  =  𝐾 ) ) ) | 
						
							| 17 | 16 | imbi2d | ⊢ ( 𝑤  =  ∅  →  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 )  =  𝐾 ) ) ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑤  =  𝑦  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑦 ) ) | 
						
							| 19 | 18 | oveq2d | ⊢ ( 𝑤  =  𝑦  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ) | 
						
							| 20 |  | fveq1 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 ) ) | 
						
							| 21 | 20 | fveq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 ) ) | 
						
							| 22 | 21 | eqeq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 23 | 19 22 | raleqbidv | ⊢ ( 𝑤  =  𝑦  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  𝑦 ) ) | 
						
							| 25 | 24 | fveq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 ) ) | 
						
							| 26 | 25 | eqeq1d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 27 | 23 26 | imbi12d | ⊢ ( 𝑤  =  𝑦  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑤  =  𝑦  →  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) ) ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ) | 
						
							| 31 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( 𝑤 ‘ 𝑖 )  =  ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ) | 
						
							| 32 | 31 | fveq1d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 ) ) | 
						
							| 33 | 32 | eqeq1d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 34 | 30 33 | raleqbidv | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 35 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) | 
						
							| 36 | 35 | fveq1d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 ) ) | 
						
							| 37 | 36 | eqeq1d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 38 | 34 37 | imbi12d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) ) | 
						
							| 39 | 38 | imbi2d | ⊢ ( 𝑤  =  ( 𝑦  ++  〈“ 𝑧 ”〉 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) ) ) | 
						
							| 40 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 42 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 43 | 42 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 ) ) | 
						
							| 44 | 43 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 45 | 41 44 | raleqbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 46 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  𝑊 ) ) | 
						
							| 47 | 46 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 ) ) | 
						
							| 48 | 47 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾  ↔  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 49 | 45 48 | imbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 )  =  𝐾 ) ) ) | 
						
							| 50 | 49 | imbi2d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ( ( 𝑤 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝐾 )  =  𝐾 ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 )  =  𝐾 ) ) ) ) | 
						
							| 51 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 52 | 51 | gsum0 | ⊢ ( 𝑆  Σg  ∅ )  =  ( 0g ‘ 𝑆 ) | 
						
							| 53 | 1 | symgid | ⊢ ( 𝑁  ∈  Fin  →  (  I   ↾  𝑁 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 54 | 53 | adantr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  (  I   ↾  𝑁 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 55 | 52 54 | eqtr4id | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( 𝑆  Σg  ∅ )  =  (  I   ↾  𝑁 ) ) | 
						
							| 56 | 55 | fveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 )  =  ( (  I   ↾  𝑁 ) ‘ 𝐾 ) ) | 
						
							| 57 |  | fvresi | ⊢ ( 𝐾  ∈  𝑁  →  ( (  I   ↾  𝑁 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( (  I   ↾  𝑁 ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 59 | 56 58 | eqtrd | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 )  =  𝐾 ) | 
						
							| 60 | 59 | a1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ∅ ( ( ∅ ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ∅ ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 61 |  | ccatws1len | ⊢ ( 𝑦  ∈  Word  𝐵  →  ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) )  =  ( ( ♯ ‘ 𝑦 )  +  1 ) ) | 
						
							| 62 | 61 | oveq2d | ⊢ ( 𝑦  ∈  Word  𝐵  →  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ) | 
						
							| 63 | 62 | raleqdv | ⊢ ( 𝑦  ∈  Word  𝐵  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 64 | 63 | adantr | ⊢ ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 66 | 1 2 | gsmsymgrfixlem1 | ⊢ ( ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 67 | 66 | 3expb | ⊢ ( ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑦 )  +  1 ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 68 | 65 67 | sylbid | ⊢ ( ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  ∧  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) | 
						
							| 69 | 68 | exp32 | ⊢ ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) ) ) | 
						
							| 70 | 69 | a2d | ⊢ ( ( 𝑦  ∈  Word  𝐵  ∧  𝑧  ∈  𝐵 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑦 ) ) ( ( 𝑦 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑦 ) ‘ 𝐾 )  =  𝐾 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ) ( ( ( 𝑦  ++  〈“ 𝑧 ”〉 ) ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  ( 𝑦  ++  〈“ 𝑧 ”〉 ) ) ‘ 𝐾 )  =  𝐾 ) ) ) ) | 
						
							| 71 | 17 28 39 50 60 70 | wrdind | ⊢ ( 𝑊  ∈  Word  𝐵  →  ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 )  =  𝐾 ) ) ) | 
						
							| 72 | 71 | com12 | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁 )  →  ( 𝑊  ∈  Word  𝐵  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 )  =  𝐾 ) ) ) | 
						
							| 73 | 72 | 3impia | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝐾  ∈  𝑁  ∧  𝑊  ∈  Word  𝐵 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( ( 𝑊 ‘ 𝑖 ) ‘ 𝐾 )  =  𝐾  →  ( ( 𝑆  Σg  𝑊 ) ‘ 𝐾 )  =  𝐾 ) ) |