| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 2 |  | gsmsymgrfix.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | gsmsymgreq.z | ⊢ 𝑍  =  ( SymGrp ‘ 𝑀 ) | 
						
							| 4 |  | gsmsymgreq.p | ⊢ 𝑃  =  ( Base ‘ 𝑍 ) | 
						
							| 5 |  | gsmsymgreq.i | ⊢ 𝐼  =  ( 𝑁  ∩  𝑀 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑤  =  ∅  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ ∅ ) ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ ∅ ) ) ) | 
						
							| 9 |  | fveq1 | ⊢ ( 𝑤  =  ∅  →  ( 𝑤 ‘ 𝑖 )  =  ( ∅ ‘ 𝑖 ) ) | 
						
							| 10 | 9 | fveq1d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝑢  =  ∅  →  ( 𝑢 ‘ 𝑖 )  =  ( ∅ ‘ 𝑖 ) ) | 
						
							| 12 | 11 | fveq1d | ⊢ ( 𝑢  =  ∅  →  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 13 | 10 12 | eqeqan12d | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 15 | 8 14 | raleqbidv | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛  ∈  𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑤  =  ∅  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  ∅ ) ) | 
						
							| 17 | 16 | fveq1d | ⊢ ( 𝑤  =  ∅  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑢  =  ∅  →  ( 𝑍  Σg  𝑢 )  =  ( 𝑍  Σg  ∅ ) ) | 
						
							| 19 | 18 | fveq1d | ⊢ ( 𝑢  =  ∅  →  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) | 
						
							| 20 | 17 19 | eqeqan12d | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) ) | 
						
							| 21 | 20 | ralbidv | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) ) | 
						
							| 22 | 15 21 | imbi12d | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛  ∈  𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) ) ) | 
						
							| 23 | 22 | imbi2d | ⊢ ( ( 𝑤  =  ∅  ∧  𝑢  =  ∅ )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛  ∈  𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑤  =  𝑥  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑥 ) ) | 
						
							| 25 | 24 | oveq2d | ⊢ ( 𝑤  =  𝑥  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) | 
						
							| 27 |  | fveq1 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑥 ‘ 𝑖 ) ) | 
						
							| 28 | 27 | fveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 29 |  | fveq1 | ⊢ ( 𝑢  =  𝑦  →  ( 𝑢 ‘ 𝑖 )  =  ( 𝑦 ‘ 𝑖 ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( 𝑢  =  𝑦  →  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 31 | 28 30 | eqeqan12d | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 32 | 31 | ralbidv | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 33 | 26 32 | raleqbidv | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 34 |  | oveq2 | ⊢ ( 𝑤  =  𝑥  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  𝑥 ) ) | 
						
							| 35 | 34 | fveq1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 ) ) | 
						
							| 36 |  | oveq2 | ⊢ ( 𝑢  =  𝑦  →  ( 𝑍  Σg  𝑢 )  =  ( 𝑍  Σg  𝑦 ) ) | 
						
							| 37 | 36 | fveq1d | ⊢ ( 𝑢  =  𝑦  →  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) ) | 
						
							| 38 | 35 37 | eqeqan12d | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) ) ) | 
						
							| 39 | 38 | ralbidv | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) ) ) | 
						
							| 40 | 33 39 | imbi12d | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) ) ) ) | 
						
							| 41 | 40 | imbi2d | ⊢ ( ( 𝑤  =  𝑥  ∧  𝑢  =  𝑦 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 42 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) | 
						
							| 43 | 42 | oveq2d | ⊢ ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ) | 
						
							| 45 |  | fveq1 | ⊢ ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  →  ( 𝑤 ‘ 𝑖 )  =  ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ) | 
						
							| 46 | 45 | fveq1d | ⊢ ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 47 |  | fveq1 | ⊢ ( 𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 )  →  ( 𝑢 ‘ 𝑖 )  =  ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ) | 
						
							| 48 | 47 | fveq1d | ⊢ ( 𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 )  →  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 49 | 46 48 | eqeqan12d | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 50 | 49 | ralbidv | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 51 | 44 50 | raleqbidv | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 52 |  | oveq2 | ⊢ ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) | 
						
							| 53 | 52 | fveq1d | ⊢ ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) ) | 
						
							| 54 |  | oveq2 | ⊢ ( 𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 )  →  ( 𝑍  Σg  𝑢 )  =  ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ) | 
						
							| 55 | 54 | fveq1d | ⊢ ( 𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 )  →  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) | 
						
							| 56 | 53 55 | eqeqan12d | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 57 | 56 | ralbidv | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 58 | 51 57 | imbi12d | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 59 | 58 | imbi2d | ⊢ ( ( 𝑤  =  ( 𝑥  ++  〈“ 𝑏 ”〉 )  ∧  𝑢  =  ( 𝑦  ++  〈“ 𝑝 ”〉 ) )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 60 |  | fveq2 | ⊢ ( 𝑤  =  𝑊  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 61 | 60 | oveq2d | ⊢ ( 𝑤  =  𝑊  →  ( 0 ..^ ( ♯ ‘ 𝑤 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 62 |  | fveq1 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑊 ‘ 𝑖 ) ) | 
						
							| 63 | 62 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 64 | 63 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 65 | 64 | ralbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 66 | 61 65 | raleqbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 67 |  | oveq2 | ⊢ ( 𝑤  =  𝑊  →  ( 𝑆  Σg  𝑤 )  =  ( 𝑆  Σg  𝑊 ) ) | 
						
							| 68 | 67 | fveq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 ) ) | 
						
							| 69 | 68 | eqeq1d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) | 
						
							| 70 | 69 | ralbidv | ⊢ ( 𝑤  =  𝑊  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) | 
						
							| 71 | 66 70 | imbi12d | ⊢ ( 𝑤  =  𝑊  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) ) | 
						
							| 72 | 71 | imbi2d | ⊢ ( 𝑤  =  𝑊  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 73 |  | fveq1 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑢 ‘ 𝑖 )  =  ( 𝑈 ‘ 𝑖 ) ) | 
						
							| 74 | 73 | fveq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 75 | 74 | eqeq2d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 76 | 75 | ralbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 77 | 76 | ralbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 78 |  | oveq2 | ⊢ ( 𝑢  =  𝑈  →  ( 𝑍  Σg  𝑢 )  =  ( 𝑍  Σg  𝑈 ) ) | 
						
							| 79 | 78 | fveq1d | ⊢ ( 𝑢  =  𝑈  →  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) | 
						
							| 80 | 79 | eqeq2d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) | 
						
							| 81 | 80 | ralbidv | ⊢ ( 𝑢  =  𝑈  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) | 
						
							| 82 | 77 81 | imbi12d | ⊢ ( 𝑢  =  𝑈  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) ) | 
						
							| 83 | 82 | imbi2d | ⊢ ( 𝑢  =  𝑈  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑢 ) ‘ 𝑛 ) ) )  ↔  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑤 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 84 |  | eleq2 | ⊢ ( 𝐼  =  ( 𝑁  ∩  𝑀 )  →  ( 𝑛  ∈  𝐼  ↔  𝑛  ∈  ( 𝑁  ∩  𝑀 ) ) ) | 
						
							| 85 |  | elin | ⊢ ( 𝑛  ∈  ( 𝑁  ∩  𝑀 )  ↔  ( 𝑛  ∈  𝑁  ∧  𝑛  ∈  𝑀 ) ) | 
						
							| 86 | 84 85 | bitrdi | ⊢ ( 𝐼  =  ( 𝑁  ∩  𝑀 )  →  ( 𝑛  ∈  𝐼  ↔  ( 𝑛  ∈  𝑁  ∧  𝑛  ∈  𝑀 ) ) ) | 
						
							| 87 |  | simpl | ⊢ ( ( 𝑛  ∈  𝑁  ∧  𝑛  ∈  𝑀 )  →  𝑛  ∈  𝑁 ) | 
						
							| 88 | 86 87 | biimtrdi | ⊢ ( 𝐼  =  ( 𝑁  ∩  𝑀 )  →  ( 𝑛  ∈  𝐼  →  𝑛  ∈  𝑁 ) ) | 
						
							| 89 | 5 88 | ax-mp | ⊢ ( 𝑛  ∈  𝐼  →  𝑛  ∈  𝑁 ) | 
						
							| 90 | 89 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  𝑛  ∈  𝐼 )  →  𝑛  ∈  𝑁 ) | 
						
							| 91 |  | fvresi | ⊢ ( 𝑛  ∈  𝑁  →  ( (  I   ↾  𝑁 ) ‘ 𝑛 )  =  𝑛 ) | 
						
							| 92 | 90 91 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  𝑛  ∈  𝐼 )  →  ( (  I   ↾  𝑁 ) ‘ 𝑛 )  =  𝑛 ) | 
						
							| 93 |  | simpr | ⊢ ( ( 𝑛  ∈  𝑁  ∧  𝑛  ∈  𝑀 )  →  𝑛  ∈  𝑀 ) | 
						
							| 94 | 86 93 | biimtrdi | ⊢ ( 𝐼  =  ( 𝑁  ∩  𝑀 )  →  ( 𝑛  ∈  𝐼  →  𝑛  ∈  𝑀 ) ) | 
						
							| 95 | 5 94 | ax-mp | ⊢ ( 𝑛  ∈  𝐼  →  𝑛  ∈  𝑀 ) | 
						
							| 96 | 95 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  𝑛  ∈  𝐼 )  →  𝑛  ∈  𝑀 ) | 
						
							| 97 |  | fvresi | ⊢ ( 𝑛  ∈  𝑀  →  ( (  I   ↾  𝑀 ) ‘ 𝑛 )  =  𝑛 ) | 
						
							| 98 | 96 97 | syl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  𝑛  ∈  𝐼 )  →  ( (  I   ↾  𝑀 ) ‘ 𝑛 )  =  𝑛 ) | 
						
							| 99 | 92 98 | eqtr4d | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  𝑛  ∈  𝐼 )  →  ( (  I   ↾  𝑁 ) ‘ 𝑛 )  =  ( (  I   ↾  𝑀 ) ‘ 𝑛 ) ) | 
						
							| 100 | 99 | ralrimiva | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ∀ 𝑛  ∈  𝐼 ( (  I   ↾  𝑁 ) ‘ 𝑛 )  =  ( (  I   ↾  𝑀 ) ‘ 𝑛 ) ) | 
						
							| 101 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 102 | 101 | gsum0 | ⊢ ( 𝑆  Σg  ∅ )  =  ( 0g ‘ 𝑆 ) | 
						
							| 103 | 1 | symgid | ⊢ ( 𝑁  ∈  Fin  →  (  I   ↾  𝑁 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 104 | 103 | adantr | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  (  I   ↾  𝑁 )  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 105 | 102 104 | eqtr4id | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( 𝑆  Σg  ∅ )  =  (  I   ↾  𝑁 ) ) | 
						
							| 106 | 105 | fveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( (  I   ↾  𝑁 ) ‘ 𝑛 ) ) | 
						
							| 107 |  | eqid | ⊢ ( 0g ‘ 𝑍 )  =  ( 0g ‘ 𝑍 ) | 
						
							| 108 | 107 | gsum0 | ⊢ ( 𝑍  Σg  ∅ )  =  ( 0g ‘ 𝑍 ) | 
						
							| 109 | 3 | symgid | ⊢ ( 𝑀  ∈  Fin  →  (  I   ↾  𝑀 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 110 | 109 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  (  I   ↾  𝑀 )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 111 | 108 110 | eqtr4id | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( 𝑍  Σg  ∅ )  =  (  I   ↾  𝑀 ) ) | 
						
							| 112 | 111 | fveq1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 )  =  ( (  I   ↾  𝑀 ) ‘ 𝑛 ) ) | 
						
							| 113 | 106 112 | eqeq12d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 )  ↔  ( (  I   ↾  𝑁 ) ‘ 𝑛 )  =  ( (  I   ↾  𝑀 ) ‘ 𝑛 ) ) ) | 
						
							| 114 | 113 | ralbidv | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( (  I   ↾  𝑁 ) ‘ 𝑛 )  =  ( (  I   ↾  𝑀 ) ‘ 𝑛 ) ) ) | 
						
							| 115 | 100 114 | mpbird | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) | 
						
							| 116 | 115 | a1d | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛  ∈  𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ∅ ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ∅ ) ‘ 𝑛 ) ) ) | 
						
							| 117 | 1 2 3 4 5 | gsmsymgreqlem2 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑥  ∈  Word  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑦  ∈  Word  𝑃  ∧  𝑝  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 118 | 117 | expcom | ⊢ ( ( ( 𝑥  ∈  Word  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑦  ∈  Word  𝑃  ∧  𝑝  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 119 | 118 | a2d | ⊢ ( ( ( 𝑥  ∈  Word  𝐵  ∧  𝑏  ∈  𝐵 )  ∧  ( 𝑦  ∈  Word  𝑃  ∧  𝑝  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑥 )  =  ( ♯ ‘ 𝑦 ) )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑥 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑦 ) ‘ 𝑛 ) ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑥  ++  〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑦  ++  〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑥  ++  〈“ 𝑏 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑦  ++  〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) | 
						
							| 120 | 23 41 59 72 83 116 119 | wrd2ind | ⊢ ( ( 𝑊  ∈  Word  𝐵  ∧  𝑈  ∈  Word  𝑃  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) )  →  ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) ) | 
						
							| 121 | 120 | impcom | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( 𝑊  ∈  Word  𝐵  ∧  𝑈  ∈  Word  𝑃  ∧  ( ♯ ‘ 𝑊 )  =  ( ♯ ‘ 𝑈 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑊 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑈 ) ‘ 𝑛 ) ) ) |