| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsmsymgrfix.s |
⊢ 𝑆 = ( SymGrp ‘ 𝑁 ) |
| 2 |
|
gsmsymgrfix.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 3 |
|
gsmsymgreq.z |
⊢ 𝑍 = ( SymGrp ‘ 𝑀 ) |
| 4 |
|
gsmsymgreq.p |
⊢ 𝑃 = ( Base ‘ 𝑍 ) |
| 5 |
|
gsmsymgreq.i |
⊢ 𝐼 = ( 𝑁 ∩ 𝑀 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑤 = ∅ → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ∅ ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ∅ ) ) ) |
| 9 |
|
fveq1 |
⊢ ( 𝑤 = ∅ → ( 𝑤 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) |
| 10 |
9
|
fveq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 11 |
|
fveq1 |
⊢ ( 𝑢 = ∅ → ( 𝑢 ‘ 𝑖 ) = ( ∅ ‘ 𝑖 ) ) |
| 12 |
11
|
fveq1d |
⊢ ( 𝑢 = ∅ → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 13 |
10 12
|
eqeqan12d |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 15 |
8 14
|
raleqbidv |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 16 |
|
oveq2 |
⊢ ( 𝑤 = ∅ → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ∅ ) ) |
| 17 |
16
|
fveq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑢 = ∅ → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg ∅ ) ) |
| 19 |
18
|
fveq1d |
⊢ ( 𝑢 = ∅ → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) |
| 20 |
17 19
|
eqeqan12d |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) |
| 21 |
20
|
ralbidv |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) |
| 22 |
15 21
|
imbi12d |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) ) |
| 23 |
22
|
imbi2d |
⊢ ( ( 𝑤 = ∅ ∧ 𝑢 = ∅ ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) ) ) |
| 24 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑥 ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑤 = 𝑥 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ) |
| 27 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 𝑖 ) = ( 𝑥 ‘ 𝑖 ) ) |
| 28 |
27
|
fveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 29 |
|
fveq1 |
⊢ ( 𝑢 = 𝑦 → ( 𝑢 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) |
| 30 |
29
|
fveq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 31 |
28 30
|
eqeqan12d |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 32 |
31
|
ralbidv |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 33 |
26 32
|
raleqbidv |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 34 |
|
oveq2 |
⊢ ( 𝑤 = 𝑥 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑥 ) ) |
| 35 |
34
|
fveq1d |
⊢ ( 𝑤 = 𝑥 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑢 = 𝑦 → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg 𝑦 ) ) |
| 37 |
36
|
fveq1d |
⊢ ( 𝑢 = 𝑦 → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) |
| 38 |
35 37
|
eqeqan12d |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) |
| 39 |
38
|
ralbidv |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) |
| 40 |
33 39
|
imbi12d |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) ) |
| 41 |
40
|
imbi2d |
⊢ ( ( 𝑤 = 𝑥 ∧ 𝑢 = 𝑦 ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) ) ) |
| 42 |
|
fveq2 |
⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) |
| 43 |
42
|
oveq2d |
⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ) |
| 45 |
|
fveq1 |
⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( 𝑤 ‘ 𝑖 ) = ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ) |
| 46 |
45
|
fveq1d |
⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 47 |
|
fveq1 |
⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( 𝑢 ‘ 𝑖 ) = ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ) |
| 48 |
47
|
fveq1d |
⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 49 |
46 48
|
eqeqan12d |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 50 |
49
|
ralbidv |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 51 |
44 50
|
raleqbidv |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 52 |
|
oveq2 |
⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) |
| 53 |
52
|
fveq1d |
⊢ ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) ) |
| 54 |
|
oveq2 |
⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ) |
| 55 |
54
|
fveq1d |
⊢ ( 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) |
| 56 |
53 55
|
eqeqan12d |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 57 |
56
|
ralbidv |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) |
| 58 |
51 57
|
imbi12d |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 59 |
58
|
imbi2d |
⊢ ( ( 𝑤 = ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ∧ 𝑢 = ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) |
| 60 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) |
| 61 |
60
|
oveq2d |
⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ♯ ‘ 𝑤 ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 62 |
|
fveq1 |
⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
| 63 |
62
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 64 |
63
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 65 |
64
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 66 |
61 65
|
raleqbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 67 |
|
oveq2 |
⊢ ( 𝑤 = 𝑊 → ( 𝑆 Σg 𝑤 ) = ( 𝑆 Σg 𝑊 ) ) |
| 68 |
67
|
fveq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) ) |
| 69 |
68
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 70 |
69
|
ralbidv |
⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 71 |
66 70
|
imbi12d |
⊢ ( 𝑤 = 𝑊 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) |
| 72 |
71
|
imbi2d |
⊢ ( 𝑤 = 𝑊 → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) ) |
| 73 |
|
fveq1 |
⊢ ( 𝑢 = 𝑈 → ( 𝑢 ‘ 𝑖 ) = ( 𝑈 ‘ 𝑖 ) ) |
| 74 |
73
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) |
| 75 |
74
|
eqeq2d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 76 |
75
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 77 |
76
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) ) ) |
| 78 |
|
oveq2 |
⊢ ( 𝑢 = 𝑈 → ( 𝑍 Σg 𝑢 ) = ( 𝑍 Σg 𝑈 ) ) |
| 79 |
78
|
fveq1d |
⊢ ( 𝑢 = 𝑈 → ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) |
| 80 |
79
|
eqeq2d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 81 |
80
|
ralbidv |
⊢ ( 𝑢 = 𝑈 → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |
| 82 |
77 81
|
imbi12d |
⊢ ( 𝑢 = 𝑈 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) |
| 83 |
82
|
imbi2d |
⊢ ( 𝑢 = 𝑈 → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑢 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑢 ) ‘ 𝑛 ) ) ) ↔ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑤 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑤 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑤 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) ) |
| 84 |
|
eleq2 |
⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 ↔ 𝑛 ∈ ( 𝑁 ∩ 𝑀 ) ) ) |
| 85 |
|
elin |
⊢ ( 𝑛 ∈ ( 𝑁 ∩ 𝑀 ) ↔ ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) ) |
| 86 |
84 85
|
bitrdi |
⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 ↔ ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) ) ) |
| 87 |
|
simpl |
⊢ ( ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) → 𝑛 ∈ 𝑁 ) |
| 88 |
86 87
|
biimtrdi |
⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑁 ) ) |
| 89 |
5 88
|
ax-mp |
⊢ ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑁 ) |
| 90 |
89
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝑁 ) |
| 91 |
|
fvresi |
⊢ ( 𝑛 ∈ 𝑁 → ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = 𝑛 ) |
| 92 |
90 91
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = 𝑛 ) |
| 93 |
|
simpr |
⊢ ( ( 𝑛 ∈ 𝑁 ∧ 𝑛 ∈ 𝑀 ) → 𝑛 ∈ 𝑀 ) |
| 94 |
86 93
|
biimtrdi |
⊢ ( 𝐼 = ( 𝑁 ∩ 𝑀 ) → ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑀 ) ) |
| 95 |
5 94
|
ax-mp |
⊢ ( 𝑛 ∈ 𝐼 → 𝑛 ∈ 𝑀 ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → 𝑛 ∈ 𝑀 ) |
| 97 |
|
fvresi |
⊢ ( 𝑛 ∈ 𝑀 → ( ( I ↾ 𝑀 ) ‘ 𝑛 ) = 𝑛 ) |
| 98 |
96 97
|
syl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → ( ( I ↾ 𝑀 ) ‘ 𝑛 ) = 𝑛 ) |
| 99 |
92 98
|
eqtr4d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ 𝑛 ∈ 𝐼 ) → ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) |
| 100 |
99
|
ralrimiva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ∀ 𝑛 ∈ 𝐼 ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) |
| 101 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 102 |
101
|
gsum0 |
⊢ ( 𝑆 Σg ∅ ) = ( 0g ‘ 𝑆 ) |
| 103 |
1
|
symgid |
⊢ ( 𝑁 ∈ Fin → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( I ↾ 𝑁 ) = ( 0g ‘ 𝑆 ) ) |
| 105 |
102 104
|
eqtr4id |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( 𝑆 Σg ∅ ) = ( I ↾ 𝑁 ) ) |
| 106 |
105
|
fveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( I ↾ 𝑁 ) ‘ 𝑛 ) ) |
| 107 |
|
eqid |
⊢ ( 0g ‘ 𝑍 ) = ( 0g ‘ 𝑍 ) |
| 108 |
107
|
gsum0 |
⊢ ( 𝑍 Σg ∅ ) = ( 0g ‘ 𝑍 ) |
| 109 |
3
|
symgid |
⊢ ( 𝑀 ∈ Fin → ( I ↾ 𝑀 ) = ( 0g ‘ 𝑍 ) ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( I ↾ 𝑀 ) = ( 0g ‘ 𝑍 ) ) |
| 111 |
108 110
|
eqtr4id |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( 𝑍 Σg ∅ ) = ( I ↾ 𝑀 ) ) |
| 112 |
111
|
fveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) |
| 113 |
106 112
|
eqeq12d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ↔ ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) ) |
| 114 |
113
|
ralbidv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ 𝐼 ( ( I ↾ 𝑁 ) ‘ 𝑛 ) = ( ( I ↾ 𝑀 ) ‘ 𝑛 ) ) ) |
| 115 |
100 114
|
mpbird |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) |
| 116 |
115
|
a1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ∅ ) ) ∀ 𝑛 ∈ 𝐼 ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ∅ ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ∅ ) ‘ 𝑛 ) = ( ( 𝑍 Σg ∅ ) ‘ 𝑛 ) ) ) |
| 117 |
1 2 3 4 5
|
gsmsymgreqlem2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( ( 𝑥 ∈ Word 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ Word 𝑃 ∧ 𝑝 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) |
| 118 |
117
|
expcom |
⊢ ( ( ( 𝑥 ∈ Word 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ Word 𝑃 ∧ 𝑝 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) |
| 119 |
118
|
a2d |
⊢ ( ( ( 𝑥 ∈ Word 𝐵 ∧ 𝑏 ∈ 𝐵 ) ∧ ( 𝑦 ∈ Word 𝑃 ∧ 𝑝 ∈ 𝑃 ) ∧ ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) → ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑥 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑥 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑦 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑥 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑦 ) ‘ 𝑛 ) ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ) ∀ 𝑛 ∈ 𝐼 ( ( ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) = ( ( ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg ( 𝑥 ++ 〈“ 𝑏 ”〉 ) ) ‘ 𝑛 ) = ( ( 𝑍 Σg ( 𝑦 ++ 〈“ 𝑝 ”〉 ) ) ‘ 𝑛 ) ) ) ) ) |
| 120 |
23 41 59 72 83 116 119
|
wrd2ind |
⊢ ( ( 𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) → ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) ) |
| 121 |
120
|
impcom |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑀 ∈ Fin ) ∧ ( 𝑊 ∈ Word 𝐵 ∧ 𝑈 ∈ Word 𝑃 ∧ ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∀ 𝑛 ∈ 𝐼 ( ( 𝑊 ‘ 𝑖 ) ‘ 𝑛 ) = ( ( 𝑈 ‘ 𝑖 ) ‘ 𝑛 ) → ∀ 𝑛 ∈ 𝐼 ( ( 𝑆 Σg 𝑊 ) ‘ 𝑛 ) = ( ( 𝑍 Σg 𝑈 ) ‘ 𝑛 ) ) ) |