| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s | ⊢ 𝑆  =  ( SymGrp ‘ 𝑁 ) | 
						
							| 2 |  | gsmsymgrfix.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 3 |  | gsmsymgreq.z | ⊢ 𝑍  =  ( SymGrp ‘ 𝑀 ) | 
						
							| 4 |  | gsmsymgreq.p | ⊢ 𝑃  =  ( Base ‘ 𝑍 ) | 
						
							| 5 |  | gsmsymgreq.i | ⊢ 𝐼  =  ( 𝑁  ∩  𝑀 ) | 
						
							| 6 |  | ccatws1len | ⊢ ( 𝑋  ∈  Word  𝐵  →  ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) )  =  ( ( ♯ ‘ 𝑋 )  +  1 ) ) | 
						
							| 7 | 6 | oveq2d | ⊢ ( 𝑋  ∈  Word  𝐵  →  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑋 )  +  1 ) ) ) | 
						
							| 8 |  | lencl | ⊢ ( 𝑋  ∈  Word  𝐵  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 9 |  | elnn0uz | ⊢ ( ( ♯ ‘ 𝑋 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 10 | 8 9 | sylib | ⊢ ( 𝑋  ∈  Word  𝐵  →  ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 ) ) | 
						
							| 11 |  | fzosplitsn | ⊢ ( ( ♯ ‘ 𝑋 )  ∈  ( ℤ≥ ‘ 0 )  →  ( 0 ..^ ( ( ♯ ‘ 𝑋 )  +  1 ) )  =  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑋  ∈  Word  𝐵  →  ( 0 ..^ ( ( ♯ ‘ 𝑋 )  +  1 ) )  =  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ) | 
						
							| 13 | 7 12 | eqtrd | ⊢ ( 𝑋  ∈  Word  𝐵  →  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) )  =  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  →  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) )  =  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) )  =  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ) | 
						
							| 16 | 15 | raleqdv | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 17 | 8 | adantr | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ♯ ‘ 𝑋 )  ∈  ℕ0 ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑖  =  ( ♯ ‘ 𝑋 )  →  ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 )  =  ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 20 | 19 | fveq1d | ⊢ ( 𝑖  =  ( ♯ ‘ 𝑋 )  →  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑖  =  ( ♯ ‘ 𝑋 )  →  ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 )  =  ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ) | 
						
							| 22 | 21 | fveq1d | ⊢ ( 𝑖  =  ( ♯ ‘ 𝑋 )  →  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) | 
						
							| 23 | 20 22 | eqeq12d | ⊢ ( 𝑖  =  ( ♯ ‘ 𝑋 )  →  ( ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) | 
						
							| 24 | 23 | ralbidv | ⊢ ( 𝑖  =  ( ♯ ‘ 𝑋 )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) | 
						
							| 25 | 24 | ralunsn | ⊢ ( ( ♯ ‘ 𝑋 )  ∈  ℕ0  →  ( ∀ 𝑖  ∈  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 26 | 18 25 | syl | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ∪  { ( ♯ ‘ 𝑋 ) } ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 27 |  | simp1l | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  𝑋  ∈  Word  𝐵 ) | 
						
							| 28 |  | ccats1val1 | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 )  =  ( 𝑋 ‘ 𝑖 ) ) | 
						
							| 29 | 27 28 | sylan | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 )  =  ( 𝑋 ‘ 𝑖 ) ) | 
						
							| 30 | 29 | fveq1d | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 31 |  | simp2l | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  𝑌  ∈  Word  𝑃 ) | 
						
							| 32 |  | oveq2 | ⊢ ( ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 )  →  ( 0 ..^ ( ♯ ‘ 𝑋 ) )  =  ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) | 
						
							| 33 | 32 | eleq2d | ⊢ ( ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) )  ↔  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) | 
						
							| 34 | 33 | biimpd | ⊢ ( ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) | 
						
							| 35 | 34 | 3ad2ant3 | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) ) | 
						
							| 36 | 35 | imp | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑌 ) ) ) | 
						
							| 37 |  | ccats1val1 | ⊢ ( ( 𝑌  ∈  Word  𝑃  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑌 ) ) )  →  ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 38 | 31 36 37 | syl2an2r | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 39 | 38 | fveq1d | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) | 
						
							| 40 | 30 39 | eqeq12d | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 41 | 40 | ralbidv | ⊢ ( ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 42 | 41 | ralbidva | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 ) ) ) | 
						
							| 43 |  | eqidd | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑋 ) ) | 
						
							| 44 |  | ccats1val2 | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑋 ) )  →  ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) )  =  𝐶 ) | 
						
							| 45 | 44 | fveq1d | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑋 ) )  →  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 46 | 43 45 | mpd3an3 | ⊢ ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  →  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 47 | 46 | 3ad2ant1 | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( 𝐶 ‘ 𝑛 ) ) | 
						
							| 48 |  | ccats1val2 | ⊢ ( ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) )  =  𝑅 ) | 
						
							| 49 | 48 | fveq1d | ⊢ ( ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 50 | 49 | 3expa | ⊢ ( ( ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 51 | 50 | 3adant1 | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) | 
						
							| 52 | 47 51 | eqeq12d | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  ↔  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) ) | 
						
							| 53 | 52 | ralbidv | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  ↔  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) ) | 
						
							| 54 | 42 53 | anbi12d | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ ( ♯ ‘ 𝑋 ) ) ‘ 𝑛 ) )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 55 | 16 26 54 | 3bitrd | ⊢ ( ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 56 | 55 | ad2antlr | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) ) ) | 
						
							| 57 |  | pm3.35 | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) ) )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) ) | 
						
							| 58 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 ) ) | 
						
							| 59 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) ) | 
						
							| 60 | 58 59 | eqeq12d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 )  ↔  ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) ) ) | 
						
							| 61 | 60 | cbvralvw | ⊢ ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 )  ↔  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) ) | 
						
							| 62 |  | simp-4l | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  →  𝑁  ∈  Fin ) | 
						
							| 63 |  | simp-4r | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  →  𝑀  ∈  Fin ) | 
						
							| 64 |  | simpr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  →  𝑛  ∈  𝐼 ) | 
						
							| 65 | 62 63 64 | 3jca | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  →  ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin  ∧  𝑛  ∈  𝐼 ) ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin  ∧  𝑛  ∈  𝐼 ) ) | 
						
							| 67 |  | simp-4r | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) ) | 
						
							| 68 |  | simplr | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  →  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) ) | 
						
							| 69 | 68 | anim1i | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ( ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) ) | 
						
							| 70 | 1 2 3 4 5 | gsmsymgreqlem1 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin  ∧  𝑛  ∈  𝐼 )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ( ( ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 71 | 70 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin  ∧  𝑛  ∈  𝐼 )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ( ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) ) )  →  ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) | 
						
							| 72 | 66 67 69 71 | syl21anc | ⊢ ( ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  ∧  ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) | 
						
							| 73 | 72 | ex | ⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  ∧  𝑛  ∈  𝐼 )  →  ( ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 )  →  ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 74 | 73 | ralimdva | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 ) )  →  ( ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 75 | 74 | expcom | ⊢ ( ∀ 𝑗  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑗 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑗 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ( ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 76 | 61 75 | sylbi | ⊢ ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ( ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 77 | 76 | com23 | ⊢ ( ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 )  →  ( ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 78 | 57 77 | syl | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) ) )  →  ( ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 79 | 78 | impancom | ⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) )  →  ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 80 | 79 | com13 | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) | 
						
							| 81 | 80 | imp | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  ∧  ∀ 𝑛  ∈  𝐼 ( 𝐶 ‘ 𝑛 )  =  ( 𝑅 ‘ 𝑛 ) )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 82 | 56 81 | sylbid | ⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) | 
						
							| 83 | 82 | ex | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑀  ∈  Fin )  ∧  ( ( 𝑋  ∈  Word  𝐵  ∧  𝐶  ∈  𝐵 )  ∧  ( 𝑌  ∈  Word  𝑃  ∧  𝑅  ∈  𝑃 )  ∧  ( ♯ ‘ 𝑋 )  =  ( ♯ ‘ 𝑌 ) ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑋 ) ) ∀ 𝑛  ∈  𝐼 ( ( 𝑋 ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( 𝑌 ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  𝑋 ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  𝑌 ) ‘ 𝑛 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ) ∀ 𝑛  ∈  𝐼 ( ( ( 𝑋  ++  〈“ 𝐶 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  =  ( ( ( 𝑌  ++  〈“ 𝑅 ”〉 ) ‘ 𝑖 ) ‘ 𝑛 )  →  ∀ 𝑛  ∈  𝐼 ( ( 𝑆  Σg  ( 𝑋  ++  〈“ 𝐶 ”〉 ) ) ‘ 𝑛 )  =  ( ( 𝑍  Σg  ( 𝑌  ++  〈“ 𝑅 ”〉 ) ) ‘ 𝑛 ) ) ) ) |