| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsmsymgrfix.s |  |-  S = ( SymGrp ` N ) | 
						
							| 2 |  | gsmsymgrfix.b |  |-  B = ( Base ` S ) | 
						
							| 3 |  | gsmsymgreq.z |  |-  Z = ( SymGrp ` M ) | 
						
							| 4 |  | gsmsymgreq.p |  |-  P = ( Base ` Z ) | 
						
							| 5 |  | gsmsymgreq.i |  |-  I = ( N i^i M ) | 
						
							| 6 |  | fveq2 |  |-  ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( w = (/) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` (/) ) ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( w = (/) /\ u = (/) ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` (/) ) ) ) | 
						
							| 9 |  | fveq1 |  |-  ( w = (/) -> ( w ` i ) = ( (/) ` i ) ) | 
						
							| 10 | 9 | fveq1d |  |-  ( w = (/) -> ( ( w ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) | 
						
							| 11 |  | fveq1 |  |-  ( u = (/) -> ( u ` i ) = ( (/) ` i ) ) | 
						
							| 12 | 11 | fveq1d |  |-  ( u = (/) -> ( ( u ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) | 
						
							| 13 | 10 12 | eqeqan12d |  |-  ( ( w = (/) /\ u = (/) ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) | 
						
							| 14 | 13 | ralbidv |  |-  ( ( w = (/) /\ u = (/) ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) | 
						
							| 15 | 8 14 | raleqbidv |  |-  ( ( w = (/) /\ u = (/) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) ) ) | 
						
							| 16 |  | oveq2 |  |-  ( w = (/) -> ( S gsum w ) = ( S gsum (/) ) ) | 
						
							| 17 | 16 | fveq1d |  |-  ( w = (/) -> ( ( S gsum w ) ` n ) = ( ( S gsum (/) ) ` n ) ) | 
						
							| 18 |  | oveq2 |  |-  ( u = (/) -> ( Z gsum u ) = ( Z gsum (/) ) ) | 
						
							| 19 | 18 | fveq1d |  |-  ( u = (/) -> ( ( Z gsum u ) ` n ) = ( ( Z gsum (/) ) ` n ) ) | 
						
							| 20 | 17 19 | eqeqan12d |  |-  ( ( w = (/) /\ u = (/) ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) | 
						
							| 21 | 20 | ralbidv |  |-  ( ( w = (/) /\ u = (/) ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) | 
						
							| 22 | 15 21 | imbi12d |  |-  ( ( w = (/) /\ u = (/) ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) ) | 
						
							| 23 | 22 | imbi2d |  |-  ( ( w = (/) /\ u = (/) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) ) ) | 
						
							| 24 |  | fveq2 |  |-  ( w = x -> ( # ` w ) = ( # ` x ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( w = x -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` x ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( w = x /\ u = y ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` x ) ) ) | 
						
							| 27 |  | fveq1 |  |-  ( w = x -> ( w ` i ) = ( x ` i ) ) | 
						
							| 28 | 27 | fveq1d |  |-  ( w = x -> ( ( w ` i ) ` n ) = ( ( x ` i ) ` n ) ) | 
						
							| 29 |  | fveq1 |  |-  ( u = y -> ( u ` i ) = ( y ` i ) ) | 
						
							| 30 | 29 | fveq1d |  |-  ( u = y -> ( ( u ` i ) ` n ) = ( ( y ` i ) ` n ) ) | 
						
							| 31 | 28 30 | eqeqan12d |  |-  ( ( w = x /\ u = y ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) | 
						
							| 32 | 31 | ralbidv |  |-  ( ( w = x /\ u = y ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) | 
						
							| 33 | 26 32 | raleqbidv |  |-  ( ( w = x /\ u = y ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) ) ) | 
						
							| 34 |  | oveq2 |  |-  ( w = x -> ( S gsum w ) = ( S gsum x ) ) | 
						
							| 35 | 34 | fveq1d |  |-  ( w = x -> ( ( S gsum w ) ` n ) = ( ( S gsum x ) ` n ) ) | 
						
							| 36 |  | oveq2 |  |-  ( u = y -> ( Z gsum u ) = ( Z gsum y ) ) | 
						
							| 37 | 36 | fveq1d |  |-  ( u = y -> ( ( Z gsum u ) ` n ) = ( ( Z gsum y ) ` n ) ) | 
						
							| 38 | 35 37 | eqeqan12d |  |-  ( ( w = x /\ u = y ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) | 
						
							| 39 | 38 | ralbidv |  |-  ( ( w = x /\ u = y ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) | 
						
							| 40 | 33 39 | imbi12d |  |-  ( ( w = x /\ u = y ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) ) | 
						
							| 41 | 40 | imbi2d |  |-  ( ( w = x /\ u = y ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) ) ) | 
						
							| 42 |  | fveq2 |  |-  ( w = ( x ++ <" b "> ) -> ( # ` w ) = ( # ` ( x ++ <" b "> ) ) ) | 
						
							| 43 | 42 | oveq2d |  |-  ( w = ( x ++ <" b "> ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) ) | 
						
							| 45 |  | fveq1 |  |-  ( w = ( x ++ <" b "> ) -> ( w ` i ) = ( ( x ++ <" b "> ) ` i ) ) | 
						
							| 46 | 45 | fveq1d |  |-  ( w = ( x ++ <" b "> ) -> ( ( w ` i ) ` n ) = ( ( ( x ++ <" b "> ) ` i ) ` n ) ) | 
						
							| 47 |  | fveq1 |  |-  ( u = ( y ++ <" p "> ) -> ( u ` i ) = ( ( y ++ <" p "> ) ` i ) ) | 
						
							| 48 | 47 | fveq1d |  |-  ( u = ( y ++ <" p "> ) -> ( ( u ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) | 
						
							| 49 | 46 48 | eqeqan12d |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) | 
						
							| 50 | 49 | ralbidv |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) | 
						
							| 51 | 44 50 | raleqbidv |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) ) ) | 
						
							| 52 |  | oveq2 |  |-  ( w = ( x ++ <" b "> ) -> ( S gsum w ) = ( S gsum ( x ++ <" b "> ) ) ) | 
						
							| 53 | 52 | fveq1d |  |-  ( w = ( x ++ <" b "> ) -> ( ( S gsum w ) ` n ) = ( ( S gsum ( x ++ <" b "> ) ) ` n ) ) | 
						
							| 54 |  | oveq2 |  |-  ( u = ( y ++ <" p "> ) -> ( Z gsum u ) = ( Z gsum ( y ++ <" p "> ) ) ) | 
						
							| 55 | 54 | fveq1d |  |-  ( u = ( y ++ <" p "> ) -> ( ( Z gsum u ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) | 
						
							| 56 | 53 55 | eqeqan12d |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) | 
						
							| 57 | 56 | ralbidv |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) | 
						
							| 58 | 51 57 | imbi12d |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) | 
						
							| 59 | 58 | imbi2d |  |-  ( ( w = ( x ++ <" b "> ) /\ u = ( y ++ <" p "> ) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) | 
						
							| 60 |  | fveq2 |  |-  ( w = W -> ( # ` w ) = ( # ` W ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( w = W -> ( 0 ..^ ( # ` w ) ) = ( 0 ..^ ( # ` W ) ) ) | 
						
							| 62 |  | fveq1 |  |-  ( w = W -> ( w ` i ) = ( W ` i ) ) | 
						
							| 63 | 62 | fveq1d |  |-  ( w = W -> ( ( w ` i ) ` n ) = ( ( W ` i ) ` n ) ) | 
						
							| 64 | 63 | eqeq1d |  |-  ( w = W -> ( ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) | 
						
							| 65 | 64 | ralbidv |  |-  ( w = W -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) | 
						
							| 66 | 61 65 | raleqbidv |  |-  ( w = W -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) | 
						
							| 67 |  | oveq2 |  |-  ( w = W -> ( S gsum w ) = ( S gsum W ) ) | 
						
							| 68 | 67 | fveq1d |  |-  ( w = W -> ( ( S gsum w ) ` n ) = ( ( S gsum W ) ` n ) ) | 
						
							| 69 | 68 | eqeq1d |  |-  ( w = W -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) <-> ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) | 
						
							| 70 | 69 | ralbidv |  |-  ( w = W -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) <-> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) | 
						
							| 71 | 66 70 | imbi12d |  |-  ( w = W -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) | 
						
							| 72 | 71 | imbi2d |  |-  ( w = W -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) ) | 
						
							| 73 |  | fveq1 |  |-  ( u = U -> ( u ` i ) = ( U ` i ) ) | 
						
							| 74 | 73 | fveq1d |  |-  ( u = U -> ( ( u ` i ) ` n ) = ( ( U ` i ) ` n ) ) | 
						
							| 75 | 74 | eqeq2d |  |-  ( u = U -> ( ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) | 
						
							| 76 | 75 | ralbidv |  |-  ( u = U -> ( A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) | 
						
							| 77 | 76 | ralbidv |  |-  ( u = U -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) <-> A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) ) ) | 
						
							| 78 |  | oveq2 |  |-  ( u = U -> ( Z gsum u ) = ( Z gsum U ) ) | 
						
							| 79 | 78 | fveq1d |  |-  ( u = U -> ( ( Z gsum u ) ` n ) = ( ( Z gsum U ) ` n ) ) | 
						
							| 80 | 79 | eqeq2d |  |-  ( u = U -> ( ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) | 
						
							| 81 | 80 | ralbidv |  |-  ( u = U -> ( A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) <-> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) | 
						
							| 82 | 77 81 | imbi12d |  |-  ( u = U -> ( ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) <-> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) | 
						
							| 83 | 82 | imbi2d |  |-  ( u = U -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( u ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum u ) ` n ) ) ) <-> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` w ) ) A. n e. I ( ( w ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum w ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) ) | 
						
							| 84 |  | eleq2 |  |-  ( I = ( N i^i M ) -> ( n e. I <-> n e. ( N i^i M ) ) ) | 
						
							| 85 |  | elin |  |-  ( n e. ( N i^i M ) <-> ( n e. N /\ n e. M ) ) | 
						
							| 86 | 84 85 | bitrdi |  |-  ( I = ( N i^i M ) -> ( n e. I <-> ( n e. N /\ n e. M ) ) ) | 
						
							| 87 |  | simpl |  |-  ( ( n e. N /\ n e. M ) -> n e. N ) | 
						
							| 88 | 86 87 | biimtrdi |  |-  ( I = ( N i^i M ) -> ( n e. I -> n e. N ) ) | 
						
							| 89 | 5 88 | ax-mp |  |-  ( n e. I -> n e. N ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> n e. N ) | 
						
							| 91 |  | fvresi |  |-  ( n e. N -> ( ( _I |` N ) ` n ) = n ) | 
						
							| 92 | 90 91 | syl |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` N ) ` n ) = n ) | 
						
							| 93 |  | simpr |  |-  ( ( n e. N /\ n e. M ) -> n e. M ) | 
						
							| 94 | 86 93 | biimtrdi |  |-  ( I = ( N i^i M ) -> ( n e. I -> n e. M ) ) | 
						
							| 95 | 5 94 | ax-mp |  |-  ( n e. I -> n e. M ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> n e. M ) | 
						
							| 97 |  | fvresi |  |-  ( n e. M -> ( ( _I |` M ) ` n ) = n ) | 
						
							| 98 | 96 97 | syl |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` M ) ` n ) = n ) | 
						
							| 99 | 92 98 | eqtr4d |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ n e. I ) -> ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) | 
						
							| 100 | 99 | ralrimiva |  |-  ( ( N e. Fin /\ M e. Fin ) -> A. n e. I ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) | 
						
							| 101 |  | eqid |  |-  ( 0g ` S ) = ( 0g ` S ) | 
						
							| 102 | 101 | gsum0 |  |-  ( S gsum (/) ) = ( 0g ` S ) | 
						
							| 103 | 1 | symgid |  |-  ( N e. Fin -> ( _I |` N ) = ( 0g ` S ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( _I |` N ) = ( 0g ` S ) ) | 
						
							| 105 | 102 104 | eqtr4id |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( S gsum (/) ) = ( _I |` N ) ) | 
						
							| 106 | 105 | fveq1d |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( ( S gsum (/) ) ` n ) = ( ( _I |` N ) ` n ) ) | 
						
							| 107 |  | eqid |  |-  ( 0g ` Z ) = ( 0g ` Z ) | 
						
							| 108 | 107 | gsum0 |  |-  ( Z gsum (/) ) = ( 0g ` Z ) | 
						
							| 109 | 3 | symgid |  |-  ( M e. Fin -> ( _I |` M ) = ( 0g ` Z ) ) | 
						
							| 110 | 109 | adantl |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( _I |` M ) = ( 0g ` Z ) ) | 
						
							| 111 | 108 110 | eqtr4id |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( Z gsum (/) ) = ( _I |` M ) ) | 
						
							| 112 | 111 | fveq1d |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( ( Z gsum (/) ) ` n ) = ( ( _I |` M ) ` n ) ) | 
						
							| 113 | 106 112 | eqeq12d |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) <-> ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) ) | 
						
							| 114 | 113 | ralbidv |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) <-> A. n e. I ( ( _I |` N ) ` n ) = ( ( _I |` M ) ` n ) ) ) | 
						
							| 115 | 100 114 | mpbird |  |-  ( ( N e. Fin /\ M e. Fin ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) | 
						
							| 116 | 115 | a1d |  |-  ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` (/) ) ) A. n e. I ( ( (/) ` i ) ` n ) = ( ( (/) ` i ) ` n ) -> A. n e. I ( ( S gsum (/) ) ` n ) = ( ( Z gsum (/) ) ` n ) ) ) | 
						
							| 117 | 1 2 3 4 5 | gsmsymgreqlem2 |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) ) -> ( ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) | 
						
							| 118 | 117 | expcom |  |-  ( ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) | 
						
							| 119 | 118 | a2d |  |-  ( ( ( x e. Word B /\ b e. B ) /\ ( y e. Word P /\ p e. P ) /\ ( # ` x ) = ( # ` y ) ) -> ( ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` x ) ) A. n e. I ( ( x ` i ) ` n ) = ( ( y ` i ) ` n ) -> A. n e. I ( ( S gsum x ) ` n ) = ( ( Z gsum y ) ` n ) ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` ( x ++ <" b "> ) ) ) A. n e. I ( ( ( x ++ <" b "> ) ` i ) ` n ) = ( ( ( y ++ <" p "> ) ` i ) ` n ) -> A. n e. I ( ( S gsum ( x ++ <" b "> ) ) ` n ) = ( ( Z gsum ( y ++ <" p "> ) ) ` n ) ) ) ) ) | 
						
							| 120 | 23 41 59 72 83 116 119 | wrd2ind |  |-  ( ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) -> ( ( N e. Fin /\ M e. Fin ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) ) | 
						
							| 121 | 120 | impcom |  |-  ( ( ( N e. Fin /\ M e. Fin ) /\ ( W e. Word B /\ U e. Word P /\ ( # ` W ) = ( # ` U ) ) ) -> ( A. i e. ( 0 ..^ ( # ` W ) ) A. n e. I ( ( W ` i ) ` n ) = ( ( U ` i ) ` n ) -> A. n e. I ( ( S gsum W ) ` n ) = ( ( Z gsum U ) ` n ) ) ) |