Database
BASIC ALGEBRAIC STRUCTURES
The complex numbers as an algebraic extensible structure
Embedding of permutation signs into a ring
psgndiflemB
Next ⟩
psgndiflemA
Metamath Proof Explorer
Ascii
Unicode
Theorem
psgndiflemB
Description:
Lemma 1 for
psgndif
.
(Contributed by
AV
, 27-Jan-2019)
Ref
Expression
Hypotheses
psgnfix.p
⊢
P
=
Base
SymGrp
N
psgnfix.t
⊢
T
=
ran
pmTrsp
N
∖
K
psgnfix.s
⊢
S
=
SymGrp
N
∖
K
psgnfix.z
⊢
Z
=
SymGrp
N
psgnfix.r
⊢
R
=
ran
pmTrsp
N
Assertion
psgndiflemB
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
→
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
→
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
Q
=
∑
Z
U
Proof
Step
Hyp
Ref
Expression
1
psgnfix.p
⊢
P
=
Base
SymGrp
N
2
psgnfix.t
⊢
T
=
ran
pmTrsp
N
∖
K
3
psgnfix.s
⊢
S
=
SymGrp
N
∖
K
4
psgnfix.z
⊢
Z
=
SymGrp
N
5
psgnfix.r
⊢
R
=
ran
pmTrsp
N
6
elrabi
⊢
Q
∈
q
∈
P
|
q
K
=
K
→
Q
∈
P
7
eqid
⊢
SymGrp
N
=
SymGrp
N
8
7
1
symgbasf
⊢
Q
∈
P
→
Q
:
N
⟶
N
9
ffn
⊢
Q
:
N
⟶
N
→
Q
Fn
N
10
6
8
9
3syl
⊢
Q
∈
q
∈
P
|
q
K
=
K
→
Q
Fn
N
11
10
ad3antlr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
Q
Fn
N
12
simpl
⊢
N
∈
Fin
∧
K
∈
N
→
N
∈
Fin
13
12
adantr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
→
N
∈
Fin
14
13
adantr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
→
N
∈
Fin
15
simp1
⊢
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
U
∈
Word
R
16
4
eqcomi
⊢
SymGrp
N
=
Z
17
16
fveq2i
⊢
Base
SymGrp
N
=
Base
Z
18
1
17
eqtri
⊢
P
=
Base
Z
19
4
18
5
gsmtrcl
⊢
N
∈
Fin
∧
U
∈
Word
R
→
∑
Z
U
∈
P
20
14
15
19
syl2an
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∑
Z
U
∈
P
21
7
1
symgbasf
⊢
∑
Z
U
∈
P
→
∑
Z
U
:
N
⟶
N
22
ffn
⊢
∑
Z
U
:
N
⟶
N
→
∑
Z
U
Fn
N
23
20
21
22
3syl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∑
Z
U
Fn
N
24
12
ad3antrrr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
N
∈
Fin
25
simpr
⊢
N
∈
Fin
∧
K
∈
N
→
K
∈
N
26
25
ad3antrrr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
K
∈
N
27
eqid
⊢
Base
Z
=
Base
Z
28
5
4
27
symgtrf
⊢
R
⊆
Base
Z
29
sswrd
⊢
R
⊆
Base
Z
→
Word
R
⊆
Word
Base
Z
30
29
sseld
⊢
R
⊆
Base
Z
→
U
∈
Word
R
→
U
∈
Word
Base
Z
31
28
30
ax-mp
⊢
U
∈
Word
R
→
U
∈
Word
Base
Z
32
31
3ad2ant1
⊢
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
U
∈
Word
Base
Z
33
32
adantl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
U
∈
Word
Base
Z
34
24
26
33
3jca
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
N
∈
Fin
∧
K
∈
N
∧
U
∈
Word
Base
Z
35
simpl
⊢
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
U
i
K
=
K
36
35
ralimi
⊢
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
W
U
i
K
=
K
37
36
3ad2ant3
⊢
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
W
U
i
K
=
K
38
37
adantl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
W
U
i
K
=
K
39
oveq2
⊢
U
=
W
→
0
..^
U
=
0
..^
W
40
39
eqcoms
⊢
W
=
U
→
0
..^
U
=
0
..^
W
41
40
raleqdv
⊢
W
=
U
→
∀
i
∈
0
..^
U
U
i
K
=
K
↔
∀
i
∈
0
..^
W
U
i
K
=
K
42
41
3ad2ant2
⊢
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
U
U
i
K
=
K
↔
∀
i
∈
0
..^
W
U
i
K
=
K
43
42
adantl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
U
U
i
K
=
K
↔
∀
i
∈
0
..^
W
U
i
K
=
K
44
38
43
mpbird
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
U
U
i
K
=
K
45
4
27
gsmsymgrfix
⊢
N
∈
Fin
∧
K
∈
N
∧
U
∈
Word
Base
Z
→
∀
i
∈
0
..^
U
U
i
K
=
K
→
∑
Z
U
K
=
K
46
34
44
45
sylc
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∑
Z
U
K
=
K
47
46
eqcomd
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
K
=
∑
Z
U
K
48
47
adantr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
=
K
→
K
=
∑
Z
U
K
49
fveq2
⊢
k
=
K
→
Q
k
=
Q
K
50
fveq1
⊢
q
=
Q
→
q
K
=
Q
K
51
50
eqeq1d
⊢
q
=
Q
→
q
K
=
K
↔
Q
K
=
K
52
51
elrab
⊢
Q
∈
q
∈
P
|
q
K
=
K
↔
Q
∈
P
∧
Q
K
=
K
53
52
simprbi
⊢
Q
∈
q
∈
P
|
q
K
=
K
→
Q
K
=
K
54
53
ad3antlr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
Q
K
=
K
55
49
54
sylan9eqr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
=
K
→
Q
k
=
K
56
fveq2
⊢
k
=
K
→
∑
Z
U
k
=
∑
Z
U
K
57
56
adantl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
=
K
→
∑
Z
U
k
=
∑
Z
U
K
58
48
55
57
3eqtr4d
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
=
K
→
Q
k
=
∑
Z
U
k
59
58
ex
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
k
=
K
→
Q
k
=
∑
Z
U
k
60
59
adantr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
k
=
K
→
Q
k
=
∑
Z
U
k
61
60
com12
⊢
k
=
K
→
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
k
=
∑
Z
U
k
62
fveq1
⊢
Q
↾
N
∖
K
=
∑
S
W
→
Q
↾
N
∖
K
k
=
∑
S
W
k
63
62
adantl
⊢
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
→
Q
↾
N
∖
K
k
=
∑
S
W
k
64
63
ad3antlr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
↾
N
∖
K
k
=
∑
S
W
k
65
64
adantl
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
↾
N
∖
K
k
=
∑
S
W
k
66
simpr
⊢
N
∈
Fin
∧
K
∈
N
∧
k
∈
N
→
k
∈
N
67
neqne
⊢
¬
k
=
K
→
k
≠
K
68
66
67
anim12i
⊢
N
∈
Fin
∧
K
∈
N
∧
k
∈
N
∧
¬
k
=
K
→
k
∈
N
∧
k
≠
K
69
eldifsn
⊢
k
∈
N
∖
K
↔
k
∈
N
∧
k
≠
K
70
68
69
sylibr
⊢
N
∈
Fin
∧
K
∈
N
∧
k
∈
N
∧
¬
k
=
K
→
k
∈
N
∖
K
71
70
fvresd
⊢
N
∈
Fin
∧
K
∈
N
∧
k
∈
N
∧
¬
k
=
K
→
Q
↾
N
∖
K
k
=
Q
k
72
71
exp31
⊢
N
∈
Fin
∧
K
∈
N
→
k
∈
N
→
¬
k
=
K
→
Q
↾
N
∖
K
k
=
Q
k
73
72
ad3antrrr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
k
∈
N
→
¬
k
=
K
→
Q
↾
N
∖
K
k
=
Q
k
74
73
imp
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
¬
k
=
K
→
Q
↾
N
∖
K
k
=
Q
k
75
74
impcom
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
↾
N
∖
K
k
=
Q
k
76
fveq2
⊢
n
=
k
→
∑
S
W
n
=
∑
S
W
k
77
fveq2
⊢
n
=
k
→
∑
Z
U
n
=
∑
Z
U
k
78
76
77
eqeq12d
⊢
n
=
k
→
∑
S
W
n
=
∑
Z
U
n
↔
∑
S
W
k
=
∑
Z
U
k
79
diffi
⊢
N
∈
Fin
→
N
∖
K
∈
Fin
80
79
ancri
⊢
N
∈
Fin
→
N
∖
K
∈
Fin
∧
N
∈
Fin
81
80
adantr
⊢
N
∈
Fin
∧
K
∈
N
→
N
∖
K
∈
Fin
∧
N
∈
Fin
82
81
ad3antrrr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
N
∖
K
∈
Fin
∧
N
∈
Fin
83
eqid
⊢
Base
S
=
Base
S
84
2
3
83
symgtrf
⊢
T
⊆
Base
S
85
sswrd
⊢
T
⊆
Base
S
→
Word
T
⊆
Word
Base
S
86
85
sseld
⊢
T
⊆
Base
S
→
W
∈
Word
T
→
W
∈
Word
Base
S
87
84
86
ax-mp
⊢
W
∈
Word
T
→
W
∈
Word
Base
S
88
87
ad2antrl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
→
W
∈
Word
Base
S
89
88
adantr
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
W
∈
Word
Base
S
90
simpr2
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
W
=
U
91
89
33
90
3jca
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
W
∈
Word
Base
S
∧
U
∈
Word
Base
Z
∧
W
=
U
92
82
91
jca
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
N
∖
K
∈
Fin
∧
N
∈
Fin
∧
W
∈
Word
Base
S
∧
U
∈
Word
Base
Z
∧
W
=
U
93
92
ad2antrl
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
N
∖
K
∈
Fin
∧
N
∈
Fin
∧
W
∈
Word
Base
S
∧
U
∈
Word
Base
Z
∧
W
=
U
94
simpr
⊢
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
95
94
ralimi
⊢
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
W
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
96
95
3ad2ant3
⊢
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
W
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
97
96
adantl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
i
∈
0
..^
W
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
98
97
ad2antrl
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
∀
i
∈
0
..^
W
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
99
incom
⊢
N
∖
K
∩
N
=
N
∩
N
∖
K
100
indif
⊢
N
∩
N
∖
K
=
N
∖
K
101
99
100
eqtri
⊢
N
∖
K
∩
N
=
N
∖
K
102
101
eqcomi
⊢
N
∖
K
=
N
∖
K
∩
N
103
3
83
4
27
102
gsmsymgreq
⊢
N
∖
K
∈
Fin
∧
N
∈
Fin
∧
W
∈
Word
Base
S
∧
U
∈
Word
Base
Z
∧
W
=
U
→
∀
i
∈
0
..^
W
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
∀
n
∈
N
∖
K
∑
S
W
n
=
∑
Z
U
n
104
93
98
103
sylc
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
∀
n
∈
N
∖
K
∑
S
W
n
=
∑
Z
U
n
105
67
anim2i
⊢
k
∈
N
∧
¬
k
=
K
→
k
∈
N
∧
k
≠
K
106
105
69
sylibr
⊢
k
∈
N
∧
¬
k
=
K
→
k
∈
N
∖
K
107
106
ex
⊢
k
∈
N
→
¬
k
=
K
→
k
∈
N
∖
K
108
107
adantl
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
¬
k
=
K
→
k
∈
N
∖
K
109
108
impcom
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
k
∈
N
∖
K
110
78
104
109
rspcdva
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
∑
S
W
k
=
∑
Z
U
k
111
65
75
110
3eqtr3d
⊢
¬
k
=
K
∧
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
k
=
∑
Z
U
k
112
111
ex
⊢
¬
k
=
K
→
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
k
=
∑
Z
U
k
113
61
112
pm2.61i
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
∧
k
∈
N
→
Q
k
=
∑
Z
U
k
114
11
23
113
eqfnfvd
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
∧
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
∧
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
Q
=
∑
Z
U
115
114
exp31
⊢
N
∈
Fin
∧
K
∈
N
∧
Q
∈
q
∈
P
|
q
K
=
K
→
W
∈
Word
T
∧
Q
↾
N
∖
K
=
∑
S
W
→
U
∈
Word
R
∧
W
=
U
∧
∀
i
∈
0
..^
W
U
i
K
=
K
∧
∀
n
∈
N
∖
K
W
i
n
=
U
i
n
→
Q
=
∑
Z
U