| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evpmss.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
evpmss.p |
|- P = ( Base ` S ) |
| 3 |
|
psgnevpmb.n |
|- N = ( pmSgn ` D ) |
| 4 |
|
simp2 |
|- ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> F e. P ) |
| 5 |
1 2 3
|
psgnevpm |
|- ( ( D e. Fin /\ F e. ( pmEven ` D ) ) -> ( N ` F ) = 1 ) |
| 6 |
5
|
ex |
|- ( D e. Fin -> ( F e. ( pmEven ` D ) -> ( N ` F ) = 1 ) ) |
| 7 |
6
|
adantr |
|- ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) -> ( N ` F ) = 1 ) ) |
| 8 |
|
neg1rr |
|- -u 1 e. RR |
| 9 |
|
neg1lt0 |
|- -u 1 < 0 |
| 10 |
|
0lt1 |
|- 0 < 1 |
| 11 |
|
0re |
|- 0 e. RR |
| 12 |
|
1re |
|- 1 e. RR |
| 13 |
8 11 12
|
lttri |
|- ( ( -u 1 < 0 /\ 0 < 1 ) -> -u 1 < 1 ) |
| 14 |
9 10 13
|
mp2an |
|- -u 1 < 1 |
| 15 |
8 14
|
gtneii |
|- 1 =/= -u 1 |
| 16 |
|
neeq1 |
|- ( ( N ` F ) = 1 -> ( ( N ` F ) =/= -u 1 <-> 1 =/= -u 1 ) ) |
| 17 |
15 16
|
mpbiri |
|- ( ( N ` F ) = 1 -> ( N ` F ) =/= -u 1 ) |
| 18 |
7 17
|
syl6 |
|- ( ( D e. Fin /\ F e. P ) -> ( F e. ( pmEven ` D ) -> ( N ` F ) =/= -u 1 ) ) |
| 19 |
18
|
necon2bd |
|- ( ( D e. Fin /\ F e. P ) -> ( ( N ` F ) = -u 1 -> -. F e. ( pmEven ` D ) ) ) |
| 20 |
19
|
3impia |
|- ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> -. F e. ( pmEven ` D ) ) |
| 21 |
4 20
|
eldifd |
|- ( ( D e. Fin /\ F e. P /\ ( N ` F ) = -u 1 ) -> F e. ( P \ ( pmEven ` D ) ) ) |