| Step |
Hyp |
Ref |
Expression |
| 1 |
|
evpmodpmf1o.s |
|- S = ( SymGrp ` D ) |
| 2 |
|
evpmodpmf1o.p |
|- P = ( Base ` S ) |
| 3 |
|
simpll |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> D e. Fin ) |
| 4 |
1
|
symggrp |
|- ( D e. Fin -> S e. Grp ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> S e. Grp ) |
| 6 |
|
eldifi |
|- ( F e. ( P \ ( pmEven ` D ) ) -> F e. P ) |
| 7 |
6
|
ad2antlr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> F e. P ) |
| 8 |
1 2
|
evpmss |
|- ( pmEven ` D ) C_ P |
| 9 |
8
|
sseli |
|- ( f e. ( pmEven ` D ) -> f e. P ) |
| 10 |
9
|
adantl |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> f e. P ) |
| 11 |
|
eqid |
|- ( +g ` S ) = ( +g ` S ) |
| 12 |
2 11
|
grpcl |
|- ( ( S e. Grp /\ F e. P /\ f e. P ) -> ( F ( +g ` S ) f ) e. P ) |
| 13 |
5 7 10 12
|
syl3anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( F ( +g ` S ) f ) e. P ) |
| 14 |
|
eqid |
|- ( pmSgn ` D ) = ( pmSgn ` D ) |
| 15 |
|
eqid |
|- ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) = ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) |
| 16 |
1 14 15
|
psgnghm2 |
|- ( D e. Fin -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 18 |
|
prex |
|- { 1 , -u 1 } e. _V |
| 19 |
|
eqid |
|- ( mulGrp ` CCfld ) = ( mulGrp ` CCfld ) |
| 20 |
|
cnfldmul |
|- x. = ( .r ` CCfld ) |
| 21 |
19 20
|
mgpplusg |
|- x. = ( +g ` ( mulGrp ` CCfld ) ) |
| 22 |
15 21
|
ressplusg |
|- ( { 1 , -u 1 } e. _V -> x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 23 |
18 22
|
ax-mp |
|- x. = ( +g ` ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) |
| 24 |
2 11 23
|
ghmlin |
|- ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ F e. P /\ f e. P ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) ) |
| 25 |
17 7 10 24
|
syl3anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) ) |
| 26 |
1 2 14
|
psgnodpm |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 27 |
26
|
adantr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 28 |
1 2 14
|
psgnevpm |
|- ( ( D e. Fin /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` f ) = 1 ) |
| 29 |
28
|
adantlr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` f ) = 1 ) |
| 30 |
27 29
|
oveq12d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) = ( -u 1 x. 1 ) ) |
| 31 |
|
ax-1cn |
|- 1 e. CC |
| 32 |
31
|
mulm1i |
|- ( -u 1 x. 1 ) = -u 1 |
| 33 |
30 32
|
eqtrdi |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( pmSgn ` D ) ` F ) x. ( ( pmSgn ` D ) ` f ) ) = -u 1 ) |
| 34 |
25 33
|
eqtrd |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = -u 1 ) |
| 35 |
1 2 14
|
psgnodpmr |
|- ( ( D e. Fin /\ ( F ( +g ` S ) f ) e. P /\ ( ( pmSgn ` D ) ` ( F ( +g ` S ) f ) ) = -u 1 ) -> ( F ( +g ` S ) f ) e. ( P \ ( pmEven ` D ) ) ) |
| 36 |
3 13 34 35
|
syl3anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( F ( +g ` S ) f ) e. ( P \ ( pmEven ` D ) ) ) |
| 37 |
36
|
fmpttd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) --> ( P \ ( pmEven ` D ) ) ) |
| 38 |
4
|
ad2antrr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> S e. Grp ) |
| 39 |
|
eqid |
|- ( invg ` S ) = ( invg ` S ) |
| 40 |
2 39
|
grpinvcl |
|- ( ( S e. Grp /\ F e. P ) -> ( ( invg ` S ) ` F ) e. P ) |
| 41 |
4 6 40
|
syl2an |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) e. P ) |
| 42 |
41
|
adantr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) e. P ) |
| 43 |
|
eldifi |
|- ( g e. ( P \ ( pmEven ` D ) ) -> g e. P ) |
| 44 |
43
|
adantl |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> g e. P ) |
| 45 |
2 11
|
grpcl |
|- ( ( S e. Grp /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P ) |
| 46 |
38 42 44 45
|
syl3anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P ) |
| 47 |
16
|
ad2antrr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) ) |
| 48 |
2 11 23
|
ghmlin |
|- ( ( ( pmSgn ` D ) e. ( S GrpHom ( ( mulGrp ` CCfld ) |`s { 1 , -u 1 } ) ) /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) ) |
| 49 |
47 42 44 48
|
syl3anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) ) |
| 50 |
1 2 39
|
symginv |
|- ( F e. P -> ( ( invg ` S ) ` F ) = `' F ) |
| 51 |
6 50
|
syl |
|- ( F e. ( P \ ( pmEven ` D ) ) -> ( ( invg ` S ) ` F ) = `' F ) |
| 52 |
51
|
ad2antlr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( invg ` S ) ` F ) = `' F ) |
| 53 |
52
|
fveq2d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) = ( ( pmSgn ` D ) ` `' F ) ) |
| 54 |
1 2 14
|
psgnodpm |
|- ( ( D e. Fin /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` g ) = -u 1 ) |
| 55 |
54
|
adantlr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` g ) = -u 1 ) |
| 56 |
53 55
|
oveq12d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` ( ( invg ` S ) ` F ) ) x. ( ( pmSgn ` D ) ` g ) ) = ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) ) |
| 57 |
|
simpll |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> D e. Fin ) |
| 58 |
6
|
ad2antlr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> F e. P ) |
| 59 |
1 14 2
|
psgninv |
|- ( ( D e. Fin /\ F e. P ) -> ( ( pmSgn ` D ) ` `' F ) = ( ( pmSgn ` D ) ` F ) ) |
| 60 |
57 58 59
|
syl2anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` `' F ) = ( ( pmSgn ` D ) ` F ) ) |
| 61 |
26
|
adantr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` F ) = -u 1 ) |
| 62 |
60 61
|
eqtrd |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` `' F ) = -u 1 ) |
| 63 |
62
|
oveq1d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) = ( -u 1 x. -u 1 ) ) |
| 64 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 65 |
63 64
|
eqtrdi |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( pmSgn ` D ) ` `' F ) x. -u 1 ) = 1 ) |
| 66 |
49 56 65
|
3eqtrd |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) |
| 67 |
1 2 14
|
psgnevpmb |
|- ( D e. Fin -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) <-> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P /\ ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) ) ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) <-> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. P /\ ( ( pmSgn ` D ) ` ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = 1 ) ) ) |
| 69 |
46 66 68
|
mpbir2and |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) e. ( pmEven ` D ) ) |
| 70 |
69
|
fmpttd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) : ( P \ ( pmEven ` D ) ) --> ( pmEven ` D ) ) |
| 71 |
|
eqidd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) = ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) |
| 72 |
|
eqidd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
| 73 |
|
oveq2 |
|- ( g = ( F ( +g ` S ) f ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) |
| 74 |
36 71 72 73
|
fmptco |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) ) |
| 75 |
|
eqid |
|- ( 0g ` S ) = ( 0g ` S ) |
| 76 |
2 11 75 39
|
grplinv |
|- ( ( S e. Grp /\ F e. P ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) = ( 0g ` S ) ) |
| 77 |
5 7 76
|
syl2anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) = ( 0g ` S ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( 0g ` S ) ( +g ` S ) f ) ) |
| 79 |
41
|
adantr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( invg ` S ) ` F ) e. P ) |
| 80 |
2 11
|
grpass |
|- ( ( S e. Grp /\ ( ( ( invg ` S ) ` F ) e. P /\ F e. P /\ f e. P ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) |
| 81 |
5 79 7 10 80
|
syl13anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( ( invg ` S ) ` F ) ( +g ` S ) F ) ( +g ` S ) f ) = ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) |
| 82 |
2 11 75
|
grplid |
|- ( ( S e. Grp /\ f e. P ) -> ( ( 0g ` S ) ( +g ` S ) f ) = f ) |
| 83 |
5 10 82
|
syl2anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( 0g ` S ) ( +g ` S ) f ) = f ) |
| 84 |
78 81 83
|
3eqtr3d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ f e. ( pmEven ` D ) ) -> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) = f ) |
| 85 |
84
|
mpteq2dva |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> f ) ) |
| 86 |
74 85
|
eqtrd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( f e. ( pmEven ` D ) |-> f ) ) |
| 87 |
|
mptresid |
|- ( _I |` ( pmEven ` D ) ) = ( f e. ( pmEven ` D ) |-> f ) |
| 88 |
86 87
|
eqtr4di |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) o. ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) ) = ( _I |` ( pmEven ` D ) ) ) |
| 89 |
|
oveq2 |
|- ( f = ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) -> ( F ( +g ` S ) f ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
| 90 |
69 72 71 89
|
fmptco |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) ) |
| 91 |
2 11 75 39
|
grprinv |
|- ( ( S e. Grp /\ F e. P ) -> ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) = ( 0g ` S ) ) |
| 92 |
4 6 91
|
syl2an |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) = ( 0g ` S ) ) |
| 93 |
92
|
oveq1d |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( ( 0g ` S ) ( +g ` S ) g ) ) |
| 94 |
93
|
adantr |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( ( 0g ` S ) ( +g ` S ) g ) ) |
| 95 |
2 11
|
grpass |
|- ( ( S e. Grp /\ ( F e. P /\ ( ( invg ` S ) ` F ) e. P /\ g e. P ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
| 96 |
38 58 42 44 95
|
syl13anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( F ( +g ` S ) ( ( invg ` S ) ` F ) ) ( +g ` S ) g ) = ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) |
| 97 |
2 11 75
|
grplid |
|- ( ( S e. Grp /\ g e. P ) -> ( ( 0g ` S ) ( +g ` S ) g ) = g ) |
| 98 |
38 44 97
|
syl2anc |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( ( 0g ` S ) ( +g ` S ) g ) = g ) |
| 99 |
94 96 98
|
3eqtr3d |
|- ( ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) /\ g e. ( P \ ( pmEven ` D ) ) ) -> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) = g ) |
| 100 |
99
|
mpteq2dva |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( g e. ( P \ ( pmEven ` D ) ) |-> ( F ( +g ` S ) ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) ) |
| 101 |
90 100
|
eqtrd |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) ) |
| 102 |
|
mptresid |
|- ( _I |` ( P \ ( pmEven ` D ) ) ) = ( g e. ( P \ ( pmEven ` D ) ) |-> g ) |
| 103 |
101 102
|
eqtr4di |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) o. ( g e. ( P \ ( pmEven ` D ) ) |-> ( ( ( invg ` S ) ` F ) ( +g ` S ) g ) ) ) = ( _I |` ( P \ ( pmEven ` D ) ) ) ) |
| 104 |
37 70 88 103
|
fcof1od |
|- ( ( D e. Fin /\ F e. ( P \ ( pmEven ` D ) ) ) -> ( f e. ( pmEven ` D ) |-> ( F ( +g ` S ) f ) ) : ( pmEven ` D ) -1-1-onto-> ( P \ ( pmEven ` D ) ) ) |