Metamath Proof Explorer


Definition df-mvl

Description: Define the set of valuations. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvl
|- mVL = ( t e. _V |-> X_ v e. ( mVR ` t ) ( ( mUV ` t ) " { ( ( mType ` t ) ` v ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvl
 |-  mVL
1 vt
 |-  t
2 cvv
 |-  _V
3 vv
 |-  v
4 cmvar
 |-  mVR
5 1 cv
 |-  t
6 5 4 cfv
 |-  ( mVR ` t )
7 cmuv
 |-  mUV
8 5 7 cfv
 |-  ( mUV ` t )
9 cmty
 |-  mType
10 5 9 cfv
 |-  ( mType ` t )
11 3 cv
 |-  v
12 11 10 cfv
 |-  ( ( mType ` t ) ` v )
13 12 csn
 |-  { ( ( mType ` t ) ` v ) }
14 8 13 cima
 |-  ( ( mUV ` t ) " { ( ( mType ` t ) ` v ) } )
15 3 6 14 cixp
 |-  X_ v e. ( mVR ` t ) ( ( mUV ` t ) " { ( ( mType ` t ) ` v ) } )
16 1 2 15 cmpt
 |-  ( t e. _V |-> X_ v e. ( mVR ` t ) ( ( mUV ` t ) " { ( ( mType ` t ) ` v ) } ) )
17 0 16 wceq
 |-  mVL = ( t e. _V |-> X_ v e. ( mVR ` t ) ( ( mUV ` t ) " { ( ( mType ` t ) ` v ) } ) )