| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmvl |
⊢ mVL |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vv |
⊢ 𝑣 |
| 4 |
|
cmvar |
⊢ mVR |
| 5 |
1
|
cv |
⊢ 𝑡 |
| 6 |
5 4
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
| 7 |
|
cmuv |
⊢ mUV |
| 8 |
5 7
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
| 9 |
|
cmty |
⊢ mType |
| 10 |
5 9
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
| 11 |
3
|
cv |
⊢ 𝑣 |
| 12 |
11 10
|
cfv |
⊢ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) |
| 13 |
12
|
csn |
⊢ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } |
| 14 |
8 13
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) |
| 15 |
3 6 14
|
cixp |
⊢ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) |
| 16 |
1 2 15
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) ) |
| 17 |
0 16
|
wceq |
⊢ mVL = ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) ) |