Step |
Hyp |
Ref |
Expression |
0 |
|
cmvl |
⊢ mVL |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vv |
⊢ 𝑣 |
4 |
|
cmvar |
⊢ mVR |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
7 |
|
cmuv |
⊢ mUV |
8 |
5 7
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
9 |
|
cmty |
⊢ mType |
10 |
5 9
|
cfv |
⊢ ( mType ‘ 𝑡 ) |
11 |
3
|
cv |
⊢ 𝑣 |
12 |
11 10
|
cfv |
⊢ ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) |
13 |
12
|
csn |
⊢ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } |
14 |
8 13
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) |
15 |
3 6 14
|
cixp |
⊢ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) |
16 |
1 2 15
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) ) |
17 |
0 16
|
wceq |
⊢ mVL = ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) ) |