Metamath Proof Explorer


Definition df-mvl

Description: Define the set of valuations. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvl mVL = ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvl mVL
1 vt 𝑡
2 cvv V
3 vv 𝑣
4 cmvar mVR
5 1 cv 𝑡
6 5 4 cfv ( mVR ‘ 𝑡 )
7 cmuv mUV
8 5 7 cfv ( mUV ‘ 𝑡 )
9 cmty mType
10 5 9 cfv ( mType ‘ 𝑡 )
11 3 cv 𝑣
12 11 10 cfv ( ( mType ‘ 𝑡 ) ‘ 𝑣 )
13 12 csn { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) }
14 8 13 cima ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } )
15 3 6 14 cixp X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } )
16 1 2 15 cmpt ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) )
17 0 16 wceq mVL = ( 𝑡 ∈ V ↦ X 𝑣 ∈ ( mVR ‘ 𝑡 ) ( ( mUV ‘ 𝑡 ) “ { ( ( mType ‘ 𝑡 ) ‘ 𝑣 ) } ) )