| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmvsb |
⊢ mVSubst |
| 1 |
|
vt |
⊢ 𝑡 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vs |
⊢ 𝑠 |
| 4 |
|
vm |
⊢ 𝑚 |
| 5 |
|
vx |
⊢ 𝑥 |
| 6 |
3
|
cv |
⊢ 𝑠 |
| 7 |
|
cmsub |
⊢ mSubst |
| 8 |
1
|
cv |
⊢ 𝑡 |
| 9 |
8 7
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
| 10 |
9
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
| 11 |
6 10
|
wcel |
⊢ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) |
| 12 |
4
|
cv |
⊢ 𝑚 |
| 13 |
|
cmvl |
⊢ mVL |
| 14 |
8 13
|
cfv |
⊢ ( mVL ‘ 𝑡 ) |
| 15 |
12 14
|
wcel |
⊢ 𝑚 ∈ ( mVL ‘ 𝑡 ) |
| 16 |
11 15
|
wa |
⊢ ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) |
| 17 |
|
vv |
⊢ 𝑣 |
| 18 |
|
cmvar |
⊢ mVR |
| 19 |
8 18
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
| 20 |
|
cmevl |
⊢ mEval |
| 21 |
8 20
|
cfv |
⊢ ( mEval ‘ 𝑡 ) |
| 22 |
21
|
cdm |
⊢ dom ( mEval ‘ 𝑡 ) |
| 23 |
|
cmvh |
⊢ mVH |
| 24 |
8 23
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
| 25 |
17
|
cv |
⊢ 𝑣 |
| 26 |
25 24
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) |
| 27 |
26 6
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) |
| 28 |
12 27 22
|
wbr |
⊢ 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) |
| 29 |
28 17 19
|
wral |
⊢ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) |
| 30 |
5
|
cv |
⊢ 𝑥 |
| 31 |
12 27 21
|
co |
⊢ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) |
| 32 |
17 19 31
|
cmpt |
⊢ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) |
| 33 |
30 32
|
wceq |
⊢ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) |
| 34 |
16 29 33
|
w3a |
⊢ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) |
| 35 |
34 3 4 5
|
coprab |
⊢ { 〈 〈 𝑠 , 𝑚 〉 , 𝑥 〉 ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } |
| 36 |
1 2 35
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ { 〈 〈 𝑠 , 𝑚 〉 , 𝑥 〉 ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } ) |
| 37 |
0 36
|
wceq |
⊢ mVSubst = ( 𝑡 ∈ V ↦ { 〈 〈 𝑠 , 𝑚 〉 , 𝑥 〉 ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } ) |