Step |
Hyp |
Ref |
Expression |
0 |
|
cmvsb |
⊢ mVSubst |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
vm |
⊢ 𝑚 |
5 |
|
vx |
⊢ 𝑥 |
6 |
3
|
cv |
⊢ 𝑠 |
7 |
|
cmsub |
⊢ mSubst |
8 |
1
|
cv |
⊢ 𝑡 |
9 |
8 7
|
cfv |
⊢ ( mSubst ‘ 𝑡 ) |
10 |
9
|
crn |
⊢ ran ( mSubst ‘ 𝑡 ) |
11 |
6 10
|
wcel |
⊢ 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) |
12 |
4
|
cv |
⊢ 𝑚 |
13 |
|
cmvl |
⊢ mVL |
14 |
8 13
|
cfv |
⊢ ( mVL ‘ 𝑡 ) |
15 |
12 14
|
wcel |
⊢ 𝑚 ∈ ( mVL ‘ 𝑡 ) |
16 |
11 15
|
wa |
⊢ ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) |
17 |
|
vv |
⊢ 𝑣 |
18 |
|
cmvar |
⊢ mVR |
19 |
8 18
|
cfv |
⊢ ( mVR ‘ 𝑡 ) |
20 |
|
cmevl |
⊢ mEval |
21 |
8 20
|
cfv |
⊢ ( mEval ‘ 𝑡 ) |
22 |
21
|
cdm |
⊢ dom ( mEval ‘ 𝑡 ) |
23 |
|
cmvh |
⊢ mVH |
24 |
8 23
|
cfv |
⊢ ( mVH ‘ 𝑡 ) |
25 |
17
|
cv |
⊢ 𝑣 |
26 |
25 24
|
cfv |
⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) |
27 |
26 6
|
cfv |
⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) |
28 |
12 27 22
|
wbr |
⊢ 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) |
29 |
28 17 19
|
wral |
⊢ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) |
30 |
5
|
cv |
⊢ 𝑥 |
31 |
12 27 21
|
co |
⊢ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) |
32 |
17 19 31
|
cmpt |
⊢ ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) |
33 |
30 32
|
wceq |
⊢ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) |
34 |
16 29 33
|
w3a |
⊢ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) |
35 |
34 3 4 5
|
coprab |
⊢ { 〈 〈 𝑠 , 𝑚 〉 , 𝑥 〉 ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } |
36 |
1 2 35
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ { 〈 〈 𝑠 , 𝑚 〉 , 𝑥 〉 ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } ) |
37 |
0 36
|
wceq |
⊢ mVSubst = ( 𝑡 ∈ V ↦ { 〈 〈 𝑠 , 𝑚 〉 , 𝑥 〉 ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } ) |