Metamath Proof Explorer


Definition df-mvsb

Description: Define substitution applied to a valuation. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvsb mVSubst = ( 𝑡 ∈ V ↦ { ⟨ ⟨ 𝑠 , 𝑚 ⟩ , 𝑥 ⟩ ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvsb mVSubst
1 vt 𝑡
2 cvv V
3 vs 𝑠
4 vm 𝑚
5 vx 𝑥
6 3 cv 𝑠
7 cmsub mSubst
8 1 cv 𝑡
9 8 7 cfv ( mSubst ‘ 𝑡 )
10 9 crn ran ( mSubst ‘ 𝑡 )
11 6 10 wcel 𝑠 ∈ ran ( mSubst ‘ 𝑡 )
12 4 cv 𝑚
13 cmvl mVL
14 8 13 cfv ( mVL ‘ 𝑡 )
15 12 14 wcel 𝑚 ∈ ( mVL ‘ 𝑡 )
16 11 15 wa ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) )
17 vv 𝑣
18 cmvar mVR
19 8 18 cfv ( mVR ‘ 𝑡 )
20 cmevl mEval
21 8 20 cfv ( mEval ‘ 𝑡 )
22 21 cdm dom ( mEval ‘ 𝑡 )
23 cmvh mVH
24 8 23 cfv ( mVH ‘ 𝑡 )
25 17 cv 𝑣
26 25 24 cfv ( ( mVH ‘ 𝑡 ) ‘ 𝑣 )
27 26 6 cfv ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )
28 12 27 22 wbr 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )
29 28 17 19 wral 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )
30 5 cv 𝑥
31 12 27 21 co ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) )
32 17 19 31 cmpt ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) )
33 30 32 wceq 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) )
34 16 29 33 w3a ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) )
35 34 3 4 5 coprab { ⟨ ⟨ 𝑠 , 𝑚 ⟩ , 𝑥 ⟩ ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) }
36 1 2 35 cmpt ( 𝑡 ∈ V ↦ { ⟨ ⟨ 𝑠 , 𝑚 ⟩ , 𝑥 ⟩ ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } )
37 0 36 wceq mVSubst = ( 𝑡 ∈ V ↦ { ⟨ ⟨ 𝑠 , 𝑚 ⟩ , 𝑥 ⟩ ∣ ( ( 𝑠 ∈ ran ( mSubst ‘ 𝑡 ) ∧ 𝑚 ∈ ( mVL ‘ 𝑡 ) ) ∧ ∀ 𝑣 ∈ ( mVR ‘ 𝑡 ) 𝑚 dom ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ∧ 𝑥 = ( 𝑣 ∈ ( mVR ‘ 𝑡 ) ↦ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } )