| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmvsb | 
							⊢ mVSubst  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							⊢ 𝑡  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							⊢ V  | 
						
						
							| 3 | 
							
								
							 | 
							vs | 
							⊢ 𝑠  | 
						
						
							| 4 | 
							
								
							 | 
							vm | 
							⊢ 𝑚  | 
						
						
							| 5 | 
							
								
							 | 
							vx | 
							⊢ 𝑥  | 
						
						
							| 6 | 
							
								3
							 | 
							cv | 
							⊢ 𝑠  | 
						
						
							| 7 | 
							
								
							 | 
							cmsub | 
							⊢ mSubst  | 
						
						
							| 8 | 
							
								1
							 | 
							cv | 
							⊢ 𝑡  | 
						
						
							| 9 | 
							
								8 7
							 | 
							cfv | 
							⊢ ( mSubst ‘ 𝑡 )  | 
						
						
							| 10 | 
							
								9
							 | 
							crn | 
							⊢ ran  ( mSubst ‘ 𝑡 )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							wcel | 
							⊢ 𝑠  ∈  ran  ( mSubst ‘ 𝑡 )  | 
						
						
							| 12 | 
							
								4
							 | 
							cv | 
							⊢ 𝑚  | 
						
						
							| 13 | 
							
								
							 | 
							cmvl | 
							⊢ mVL  | 
						
						
							| 14 | 
							
								8 13
							 | 
							cfv | 
							⊢ ( mVL ‘ 𝑡 )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							wcel | 
							⊢ 𝑚  ∈  ( mVL ‘ 𝑡 )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							wa | 
							⊢ ( 𝑠  ∈  ran  ( mSubst ‘ 𝑡 )  ∧  𝑚  ∈  ( mVL ‘ 𝑡 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							vv | 
							⊢ 𝑣  | 
						
						
							| 18 | 
							
								
							 | 
							cmvar | 
							⊢ mVR  | 
						
						
							| 19 | 
							
								8 18
							 | 
							cfv | 
							⊢ ( mVR ‘ 𝑡 )  | 
						
						
							| 20 | 
							
								
							 | 
							cmevl | 
							⊢ mEval  | 
						
						
							| 21 | 
							
								8 20
							 | 
							cfv | 
							⊢ ( mEval ‘ 𝑡 )  | 
						
						
							| 22 | 
							
								21
							 | 
							cdm | 
							⊢ dom  ( mEval ‘ 𝑡 )  | 
						
						
							| 23 | 
							
								
							 | 
							cmvh | 
							⊢ mVH  | 
						
						
							| 24 | 
							
								8 23
							 | 
							cfv | 
							⊢ ( mVH ‘ 𝑡 )  | 
						
						
							| 25 | 
							
								17
							 | 
							cv | 
							⊢ 𝑣  | 
						
						
							| 26 | 
							
								25 24
							 | 
							cfv | 
							⊢ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 )  | 
						
						
							| 27 | 
							
								26 6
							 | 
							cfv | 
							⊢ ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  | 
						
						
							| 28 | 
							
								12 27 22
							 | 
							wbr | 
							⊢ 𝑚 dom  ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  | 
						
						
							| 29 | 
							
								28 17 19
							 | 
							wral | 
							⊢ ∀ 𝑣  ∈  ( mVR ‘ 𝑡 ) 𝑚 dom  ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  | 
						
						
							| 30 | 
							
								5
							 | 
							cv | 
							⊢ 𝑥  | 
						
						
							| 31 | 
							
								12 27 21
							 | 
							co | 
							⊢ ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) )  | 
						
						
							| 32 | 
							
								17 19 31
							 | 
							cmpt | 
							⊢ ( 𝑣  ∈  ( mVR ‘ 𝑡 )  ↦  ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							wceq | 
							⊢ 𝑥  =  ( 𝑣  ∈  ( mVR ‘ 𝑡 )  ↦  ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) )  | 
						
						
							| 34 | 
							
								16 29 33
							 | 
							w3a | 
							⊢ ( ( 𝑠  ∈  ran  ( mSubst ‘ 𝑡 )  ∧  𝑚  ∈  ( mVL ‘ 𝑡 ) )  ∧  ∀ 𝑣  ∈  ( mVR ‘ 𝑡 ) 𝑚 dom  ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  ∧  𝑥  =  ( 𝑣  ∈  ( mVR ‘ 𝑡 )  ↦  ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) )  | 
						
						
							| 35 | 
							
								34 3 4 5
							 | 
							coprab | 
							⊢ { 〈 〈 𝑠 ,  𝑚 〉 ,  𝑥 〉  ∣  ( ( 𝑠  ∈  ran  ( mSubst ‘ 𝑡 )  ∧  𝑚  ∈  ( mVL ‘ 𝑡 ) )  ∧  ∀ 𝑣  ∈  ( mVR ‘ 𝑡 ) 𝑚 dom  ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  ∧  𝑥  =  ( 𝑣  ∈  ( mVR ‘ 𝑡 )  ↦  ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) }  | 
						
						
							| 36 | 
							
								1 2 35
							 | 
							cmpt | 
							⊢ ( 𝑡  ∈  V  ↦  { 〈 〈 𝑠 ,  𝑚 〉 ,  𝑥 〉  ∣  ( ( 𝑠  ∈  ran  ( mSubst ‘ 𝑡 )  ∧  𝑚  ∈  ( mVL ‘ 𝑡 ) )  ∧  ∀ 𝑣  ∈  ( mVR ‘ 𝑡 ) 𝑚 dom  ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  ∧  𝑥  =  ( 𝑣  ∈  ( mVR ‘ 𝑡 )  ↦  ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } )  | 
						
						
							| 37 | 
							
								0 36
							 | 
							wceq | 
							⊢ mVSubst  =  ( 𝑡  ∈  V  ↦  { 〈 〈 𝑠 ,  𝑚 〉 ,  𝑥 〉  ∣  ( ( 𝑠  ∈  ran  ( mSubst ‘ 𝑡 )  ∧  𝑚  ∈  ( mVL ‘ 𝑡 ) )  ∧  ∀ 𝑣  ∈  ( mVR ‘ 𝑡 ) 𝑚 dom  ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) )  ∧  𝑥  =  ( 𝑣  ∈  ( mVR ‘ 𝑡 )  ↦  ( 𝑚 ( mEval ‘ 𝑡 ) ( 𝑠 ‘ ( ( mVH ‘ 𝑡 ) ‘ 𝑣 ) ) ) ) ) } )  |