Step |
Hyp |
Ref |
Expression |
0 |
|
cmfr |
⊢ mFRel |
1 |
|
vt |
⊢ 𝑡 |
2 |
|
cvv |
⊢ V |
3 |
|
vr |
⊢ 𝑟 |
4 |
|
cmuv |
⊢ mUV |
5 |
1
|
cv |
⊢ 𝑡 |
6 |
5 4
|
cfv |
⊢ ( mUV ‘ 𝑡 ) |
7 |
6 6
|
cxp |
⊢ ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) |
8 |
7
|
cpw |
⊢ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) |
9 |
3
|
cv |
⊢ 𝑟 |
10 |
9
|
ccnv |
⊢ ◡ 𝑟 |
11 |
10 9
|
wceq |
⊢ ◡ 𝑟 = 𝑟 |
12 |
|
vc |
⊢ 𝑐 |
13 |
|
cmvt |
⊢ mVT |
14 |
5 13
|
cfv |
⊢ ( mVT ‘ 𝑡 ) |
15 |
|
vw |
⊢ 𝑤 |
16 |
6
|
cpw |
⊢ 𝒫 ( mUV ‘ 𝑡 ) |
17 |
|
cfn |
⊢ Fin |
18 |
16 17
|
cin |
⊢ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) |
19 |
|
vv |
⊢ 𝑣 |
20 |
12
|
cv |
⊢ 𝑐 |
21 |
20
|
csn |
⊢ { 𝑐 } |
22 |
6 21
|
cima |
⊢ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) |
23 |
15
|
cv |
⊢ 𝑤 |
24 |
19
|
cv |
⊢ 𝑣 |
25 |
24
|
csn |
⊢ { 𝑣 } |
26 |
9 25
|
cima |
⊢ ( 𝑟 “ { 𝑣 } ) |
27 |
23 26
|
wss |
⊢ 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) |
28 |
27 19 22
|
wrex |
⊢ ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) |
29 |
28 15 18
|
wral |
⊢ ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) |
30 |
29 12 14
|
wral |
⊢ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) |
31 |
11 30
|
wa |
⊢ ( ◡ 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) |
32 |
31 3 8
|
crab |
⊢ { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( ◡ 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) } |
33 |
1 2 32
|
cmpt |
⊢ ( 𝑡 ∈ V ↦ { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( ◡ 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) } ) |
34 |
0 33
|
wceq |
⊢ mFRel = ( 𝑡 ∈ V ↦ { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( ◡ 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) } ) |