Metamath Proof Explorer


Definition df-mfrel

Description: Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mfrel mFRel = ( 𝑡 ∈ V ↦ { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmfr mFRel
1 vt 𝑡
2 cvv V
3 vr 𝑟
4 cmuv mUV
5 1 cv 𝑡
6 5 4 cfv ( mUV ‘ 𝑡 )
7 6 6 cxp ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) )
8 7 cpw 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) )
9 3 cv 𝑟
10 9 ccnv 𝑟
11 10 9 wceq 𝑟 = 𝑟
12 vc 𝑐
13 cmvt mVT
14 5 13 cfv ( mVT ‘ 𝑡 )
15 vw 𝑤
16 6 cpw 𝒫 ( mUV ‘ 𝑡 )
17 cfn Fin
18 16 17 cin ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin )
19 vv 𝑣
20 12 cv 𝑐
21 20 csn { 𝑐 }
22 6 21 cima ( ( mUV ‘ 𝑡 ) “ { 𝑐 } )
23 15 cv 𝑤
24 19 cv 𝑣
25 24 csn { 𝑣 }
26 9 25 cima ( 𝑟 “ { 𝑣 } )
27 23 26 wss 𝑤 ⊆ ( 𝑟 “ { 𝑣 } )
28 27 19 22 wrex 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } )
29 28 15 18 wral 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } )
30 29 12 14 wral 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } )
31 11 30 wa ( 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) )
32 31 3 8 crab { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) }
33 1 2 32 cmpt ( 𝑡 ∈ V ↦ { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) } )
34 0 33 wceq mFRel = ( 𝑡 ∈ V ↦ { 𝑟 ∈ 𝒫 ( ( mUV ‘ 𝑡 ) × ( mUV ‘ 𝑡 ) ) ∣ ( 𝑟 = 𝑟 ∧ ∀ 𝑐 ∈ ( mVT ‘ 𝑡 ) ∀ 𝑤 ∈ ( 𝒫 ( mUV ‘ 𝑡 ) ∩ Fin ) ∃ 𝑣 ∈ ( ( mUV ‘ 𝑡 ) “ { 𝑐 } ) 𝑤 ⊆ ( 𝑟 “ { 𝑣 } ) ) } )