Step |
Hyp |
Ref |
Expression |
0 |
|
cmfr |
|- mFRel |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vr |
|- r |
4 |
|
cmuv |
|- mUV |
5 |
1
|
cv |
|- t |
6 |
5 4
|
cfv |
|- ( mUV ` t ) |
7 |
6 6
|
cxp |
|- ( ( mUV ` t ) X. ( mUV ` t ) ) |
8 |
7
|
cpw |
|- ~P ( ( mUV ` t ) X. ( mUV ` t ) ) |
9 |
3
|
cv |
|- r |
10 |
9
|
ccnv |
|- `' r |
11 |
10 9
|
wceq |
|- `' r = r |
12 |
|
vc |
|- c |
13 |
|
cmvt |
|- mVT |
14 |
5 13
|
cfv |
|- ( mVT ` t ) |
15 |
|
vw |
|- w |
16 |
6
|
cpw |
|- ~P ( mUV ` t ) |
17 |
|
cfn |
|- Fin |
18 |
16 17
|
cin |
|- ( ~P ( mUV ` t ) i^i Fin ) |
19 |
|
vv |
|- v |
20 |
12
|
cv |
|- c |
21 |
20
|
csn |
|- { c } |
22 |
6 21
|
cima |
|- ( ( mUV ` t ) " { c } ) |
23 |
15
|
cv |
|- w |
24 |
19
|
cv |
|- v |
25 |
24
|
csn |
|- { v } |
26 |
9 25
|
cima |
|- ( r " { v } ) |
27 |
23 26
|
wss |
|- w C_ ( r " { v } ) |
28 |
27 19 22
|
wrex |
|- E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) |
29 |
28 15 18
|
wral |
|- A. w e. ( ~P ( mUV ` t ) i^i Fin ) E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) |
30 |
29 12 14
|
wral |
|- A. c e. ( mVT ` t ) A. w e. ( ~P ( mUV ` t ) i^i Fin ) E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) |
31 |
11 30
|
wa |
|- ( `' r = r /\ A. c e. ( mVT ` t ) A. w e. ( ~P ( mUV ` t ) i^i Fin ) E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) ) |
32 |
31 3 8
|
crab |
|- { r e. ~P ( ( mUV ` t ) X. ( mUV ` t ) ) | ( `' r = r /\ A. c e. ( mVT ` t ) A. w e. ( ~P ( mUV ` t ) i^i Fin ) E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) ) } |
33 |
1 2 32
|
cmpt |
|- ( t e. _V |-> { r e. ~P ( ( mUV ` t ) X. ( mUV ` t ) ) | ( `' r = r /\ A. c e. ( mVT ` t ) A. w e. ( ~P ( mUV ` t ) i^i Fin ) E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) ) } ) |
34 |
0 33
|
wceq |
|- mFRel = ( t e. _V |-> { r e. ~P ( ( mUV ` t ) X. ( mUV ` t ) ) | ( `' r = r /\ A. c e. ( mVT ` t ) A. w e. ( ~P ( mUV ` t ) i^i Fin ) E. v e. ( ( mUV ` t ) " { c } ) w C_ ( r " { v } ) ) } ) |