Metamath Proof Explorer


Definition df-mfrel

Description: Define the set of freshness relations. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mfrel mFRel=tVr𝒫mUVt×mUVt|r-1=rcmVTtw𝒫mUVtFinvmUVtcwrv

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmfr classmFRel
1 vt setvart
2 cvv classV
3 vr setvarr
4 cmuv classmUV
5 1 cv setvart
6 5 4 cfv classmUVt
7 6 6 cxp classmUVt×mUVt
8 7 cpw class𝒫mUVt×mUVt
9 3 cv setvarr
10 9 ccnv classr-1
11 10 9 wceq wffr-1=r
12 vc setvarc
13 cmvt classmVT
14 5 13 cfv classmVTt
15 vw setvarw
16 6 cpw class𝒫mUVt
17 cfn classFin
18 16 17 cin class𝒫mUVtFin
19 vv setvarv
20 12 cv setvarc
21 20 csn classc
22 6 21 cima classmUVtc
23 15 cv setvarw
24 19 cv setvarv
25 24 csn classv
26 9 25 cima classrv
27 23 26 wss wffwrv
28 27 19 22 wrex wffvmUVtcwrv
29 28 15 18 wral wffw𝒫mUVtFinvmUVtcwrv
30 29 12 14 wral wffcmVTtw𝒫mUVtFinvmUVtcwrv
31 11 30 wa wffr-1=rcmVTtw𝒫mUVtFinvmUVtcwrv
32 31 3 8 crab classr𝒫mUVt×mUVt|r-1=rcmVTtw𝒫mUVtFinvmUVtcwrv
33 1 2 32 cmpt classtVr𝒫mUVt×mUVt|r-1=rcmVTtw𝒫mUVtFinvmUVtcwrv
34 0 33 wceq wffmFRel=tVr𝒫mUVt×mUVt|r-1=rcmVTtw𝒫mUVtFinvmUVtcwrv