Metamath Proof Explorer


Definition df-mvsb

Description: Define substitution applied to a valuation. (Contributed by Mario Carneiro, 14-Jul-2016)

Ref Expression
Assertion df-mvsb mVSubst = t V s m x | s ran mSubst t m mVL t v mVR t m dom mEval t s mVH t v x = v mVR t m mEval t s mVH t v

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmvsb class mVSubst
1 vt setvar t
2 cvv class V
3 vs setvar s
4 vm setvar m
5 vx setvar x
6 3 cv setvar s
7 cmsub class mSubst
8 1 cv setvar t
9 8 7 cfv class mSubst t
10 9 crn class ran mSubst t
11 6 10 wcel wff s ran mSubst t
12 4 cv setvar m
13 cmvl class mVL
14 8 13 cfv class mVL t
15 12 14 wcel wff m mVL t
16 11 15 wa wff s ran mSubst t m mVL t
17 vv setvar v
18 cmvar class mVR
19 8 18 cfv class mVR t
20 cmevl class mEval
21 8 20 cfv class mEval t
22 21 cdm class dom mEval t
23 cmvh class mVH
24 8 23 cfv class mVH t
25 17 cv setvar v
26 25 24 cfv class mVH t v
27 26 6 cfv class s mVH t v
28 12 27 22 wbr wff m dom mEval t s mVH t v
29 28 17 19 wral wff v mVR t m dom mEval t s mVH t v
30 5 cv setvar x
31 12 27 21 co class m mEval t s mVH t v
32 17 19 31 cmpt class v mVR t m mEval t s mVH t v
33 30 32 wceq wff x = v mVR t m mEval t s mVH t v
34 16 29 33 w3a wff s ran mSubst t m mVL t v mVR t m dom mEval t s mVH t v x = v mVR t m mEval t s mVH t v
35 34 3 4 5 coprab class s m x | s ran mSubst t m mVL t v mVR t m dom mEval t s mVH t v x = v mVR t m mEval t s mVH t v
36 1 2 35 cmpt class t V s m x | s ran mSubst t m mVL t v mVR t m dom mEval t s mVH t v x = v mVR t m mEval t s mVH t v
37 0 36 wceq wff mVSubst = t V s m x | s ran mSubst t m mVL t v mVR t m dom mEval t s mVH t v x = v mVR t m mEval t s mVH t v