| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 0 | 
							
								
							 | 
							cmvsb | 
							 |-  mVSubst  | 
						
						
							| 1 | 
							
								
							 | 
							vt | 
							 |-  t  | 
						
						
							| 2 | 
							
								
							 | 
							cvv | 
							 |-  _V  | 
						
						
							| 3 | 
							
								
							 | 
							vs | 
							 |-  s  | 
						
						
							| 4 | 
							
								
							 | 
							vm | 
							 |-  m  | 
						
						
							| 5 | 
							
								
							 | 
							vx | 
							 |-  x  | 
						
						
							| 6 | 
							
								3
							 | 
							cv | 
							 |-  s  | 
						
						
							| 7 | 
							
								
							 | 
							cmsub | 
							 |-  mSubst  | 
						
						
							| 8 | 
							
								1
							 | 
							cv | 
							 |-  t  | 
						
						
							| 9 | 
							
								8 7
							 | 
							cfv | 
							 |-  ( mSubst ` t )  | 
						
						
							| 10 | 
							
								9
							 | 
							crn | 
							 |-  ran ( mSubst ` t )  | 
						
						
							| 11 | 
							
								6 10
							 | 
							wcel | 
							 |-  s e. ran ( mSubst ` t )  | 
						
						
							| 12 | 
							
								4
							 | 
							cv | 
							 |-  m  | 
						
						
							| 13 | 
							
								
							 | 
							cmvl | 
							 |-  mVL  | 
						
						
							| 14 | 
							
								8 13
							 | 
							cfv | 
							 |-  ( mVL ` t )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							wcel | 
							 |-  m e. ( mVL ` t )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							wa | 
							 |-  ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) )  | 
						
						
							| 17 | 
							
								
							 | 
							vv | 
							 |-  v  | 
						
						
							| 18 | 
							
								
							 | 
							cmvar | 
							 |-  mVR  | 
						
						
							| 19 | 
							
								8 18
							 | 
							cfv | 
							 |-  ( mVR ` t )  | 
						
						
							| 20 | 
							
								
							 | 
							cmevl | 
							 |-  mEval  | 
						
						
							| 21 | 
							
								8 20
							 | 
							cfv | 
							 |-  ( mEval ` t )  | 
						
						
							| 22 | 
							
								21
							 | 
							cdm | 
							 |-  dom ( mEval ` t )  | 
						
						
							| 23 | 
							
								
							 | 
							cmvh | 
							 |-  mVH  | 
						
						
							| 24 | 
							
								8 23
							 | 
							cfv | 
							 |-  ( mVH ` t )  | 
						
						
							| 25 | 
							
								17
							 | 
							cv | 
							 |-  v  | 
						
						
							| 26 | 
							
								25 24
							 | 
							cfv | 
							 |-  ( ( mVH ` t ) ` v )  | 
						
						
							| 27 | 
							
								26 6
							 | 
							cfv | 
							 |-  ( s ` ( ( mVH ` t ) ` v ) )  | 
						
						
							| 28 | 
							
								12 27 22
							 | 
							wbr | 
							 |-  m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) )  | 
						
						
							| 29 | 
							
								28 17 19
							 | 
							wral | 
							 |-  A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) )  | 
						
						
							| 30 | 
							
								5
							 | 
							cv | 
							 |-  x  | 
						
						
							| 31 | 
							
								12 27 21
							 | 
							co | 
							 |-  ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) )  | 
						
						
							| 32 | 
							
								17 19 31
							 | 
							cmpt | 
							 |-  ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) )  | 
						
						
							| 33 | 
							
								30 32
							 | 
							wceq | 
							 |-  x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) )  | 
						
						
							| 34 | 
							
								16 29 33
							 | 
							w3a | 
							 |-  ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) )  | 
						
						
							| 35 | 
							
								34 3 4 5
							 | 
							coprab | 
							 |-  { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } | 
						
						
							| 36 | 
							
								1 2 35
							 | 
							cmpt | 
							 |-  ( t e. _V |-> { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } ) | 
						
						
							| 37 | 
							
								0 36
							 | 
							wceq | 
							 |-  mVSubst = ( t e. _V |-> { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } ) |