| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cmvsb |
|- mVSubst |
| 1 |
|
vt |
|- t |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vs |
|- s |
| 4 |
|
vm |
|- m |
| 5 |
|
vx |
|- x |
| 6 |
3
|
cv |
|- s |
| 7 |
|
cmsub |
|- mSubst |
| 8 |
1
|
cv |
|- t |
| 9 |
8 7
|
cfv |
|- ( mSubst ` t ) |
| 10 |
9
|
crn |
|- ran ( mSubst ` t ) |
| 11 |
6 10
|
wcel |
|- s e. ran ( mSubst ` t ) |
| 12 |
4
|
cv |
|- m |
| 13 |
|
cmvl |
|- mVL |
| 14 |
8 13
|
cfv |
|- ( mVL ` t ) |
| 15 |
12 14
|
wcel |
|- m e. ( mVL ` t ) |
| 16 |
11 15
|
wa |
|- ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) |
| 17 |
|
vv |
|- v |
| 18 |
|
cmvar |
|- mVR |
| 19 |
8 18
|
cfv |
|- ( mVR ` t ) |
| 20 |
|
cmevl |
|- mEval |
| 21 |
8 20
|
cfv |
|- ( mEval ` t ) |
| 22 |
21
|
cdm |
|- dom ( mEval ` t ) |
| 23 |
|
cmvh |
|- mVH |
| 24 |
8 23
|
cfv |
|- ( mVH ` t ) |
| 25 |
17
|
cv |
|- v |
| 26 |
25 24
|
cfv |
|- ( ( mVH ` t ) ` v ) |
| 27 |
26 6
|
cfv |
|- ( s ` ( ( mVH ` t ) ` v ) ) |
| 28 |
12 27 22
|
wbr |
|- m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) |
| 29 |
28 17 19
|
wral |
|- A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) |
| 30 |
5
|
cv |
|- x |
| 31 |
12 27 21
|
co |
|- ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) |
| 32 |
17 19 31
|
cmpt |
|- ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) |
| 33 |
30 32
|
wceq |
|- x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) |
| 34 |
16 29 33
|
w3a |
|- ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) |
| 35 |
34 3 4 5
|
coprab |
|- { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } |
| 36 |
1 2 35
|
cmpt |
|- ( t e. _V |-> { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } ) |
| 37 |
0 36
|
wceq |
|- mVSubst = ( t e. _V |-> { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } ) |