Step |
Hyp |
Ref |
Expression |
0 |
|
cmvsb |
|- mVSubst |
1 |
|
vt |
|- t |
2 |
|
cvv |
|- _V |
3 |
|
vs |
|- s |
4 |
|
vm |
|- m |
5 |
|
vx |
|- x |
6 |
3
|
cv |
|- s |
7 |
|
cmsub |
|- mSubst |
8 |
1
|
cv |
|- t |
9 |
8 7
|
cfv |
|- ( mSubst ` t ) |
10 |
9
|
crn |
|- ran ( mSubst ` t ) |
11 |
6 10
|
wcel |
|- s e. ran ( mSubst ` t ) |
12 |
4
|
cv |
|- m |
13 |
|
cmvl |
|- mVL |
14 |
8 13
|
cfv |
|- ( mVL ` t ) |
15 |
12 14
|
wcel |
|- m e. ( mVL ` t ) |
16 |
11 15
|
wa |
|- ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) |
17 |
|
vv |
|- v |
18 |
|
cmvar |
|- mVR |
19 |
8 18
|
cfv |
|- ( mVR ` t ) |
20 |
|
cmevl |
|- mEval |
21 |
8 20
|
cfv |
|- ( mEval ` t ) |
22 |
21
|
cdm |
|- dom ( mEval ` t ) |
23 |
|
cmvh |
|- mVH |
24 |
8 23
|
cfv |
|- ( mVH ` t ) |
25 |
17
|
cv |
|- v |
26 |
25 24
|
cfv |
|- ( ( mVH ` t ) ` v ) |
27 |
26 6
|
cfv |
|- ( s ` ( ( mVH ` t ) ` v ) ) |
28 |
12 27 22
|
wbr |
|- m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) |
29 |
28 17 19
|
wral |
|- A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) |
30 |
5
|
cv |
|- x |
31 |
12 27 21
|
co |
|- ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) |
32 |
17 19 31
|
cmpt |
|- ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) |
33 |
30 32
|
wceq |
|- x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) |
34 |
16 29 33
|
w3a |
|- ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) |
35 |
34 3 4 5
|
coprab |
|- { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } |
36 |
1 2 35
|
cmpt |
|- ( t e. _V |-> { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } ) |
37 |
0 36
|
wceq |
|- mVSubst = ( t e. _V |-> { <. <. s , m >. , x >. | ( ( s e. ran ( mSubst ` t ) /\ m e. ( mVL ` t ) ) /\ A. v e. ( mVR ` t ) m dom ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) /\ x = ( v e. ( mVR ` t ) |-> ( m ( mEval ` t ) ( s ` ( ( mVH ` t ) ` v ) ) ) ) ) } ) |