| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpell14qr |  |-  Pell14QR | 
						
							| 1 |  | vx |  |-  x | 
						
							| 2 |  | cn |  |-  NN | 
						
							| 3 |  | csquarenn |  |-  []NN | 
						
							| 4 | 2 3 | cdif |  |-  ( NN \ []NN ) | 
						
							| 5 |  | vy |  |-  y | 
						
							| 6 |  | cr |  |-  RR | 
						
							| 7 |  | vz |  |-  z | 
						
							| 8 |  | cn0 |  |-  NN0 | 
						
							| 9 |  | vw |  |-  w | 
						
							| 10 |  | cz |  |-  ZZ | 
						
							| 11 | 5 | cv |  |-  y | 
						
							| 12 | 7 | cv |  |-  z | 
						
							| 13 |  | caddc |  |-  + | 
						
							| 14 |  | csqrt |  |-  sqrt | 
						
							| 15 | 1 | cv |  |-  x | 
						
							| 16 | 15 14 | cfv |  |-  ( sqrt ` x ) | 
						
							| 17 |  | cmul |  |-  x. | 
						
							| 18 | 9 | cv |  |-  w | 
						
							| 19 | 16 18 17 | co |  |-  ( ( sqrt ` x ) x. w ) | 
						
							| 20 | 12 19 13 | co |  |-  ( z + ( ( sqrt ` x ) x. w ) ) | 
						
							| 21 | 11 20 | wceq |  |-  y = ( z + ( ( sqrt ` x ) x. w ) ) | 
						
							| 22 |  | cexp |  |-  ^ | 
						
							| 23 |  | c2 |  |-  2 | 
						
							| 24 | 12 23 22 | co |  |-  ( z ^ 2 ) | 
						
							| 25 |  | cmin |  |-  - | 
						
							| 26 | 18 23 22 | co |  |-  ( w ^ 2 ) | 
						
							| 27 | 15 26 17 | co |  |-  ( x x. ( w ^ 2 ) ) | 
						
							| 28 | 24 27 25 | co |  |-  ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) | 
						
							| 29 |  | c1 |  |-  1 | 
						
							| 30 | 28 29 | wceq |  |-  ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 | 
						
							| 31 | 21 30 | wa |  |-  ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) | 
						
							| 32 | 31 9 10 | wrex |  |-  E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) | 
						
							| 33 | 32 7 8 | wrex |  |-  E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) | 
						
							| 34 | 33 5 6 | crab |  |-  { y e. RR | E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) } | 
						
							| 35 | 1 4 34 | cmpt |  |-  ( x e. ( NN \ []NN ) |-> { y e. RR | E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) } ) | 
						
							| 36 | 0 35 | wceq |  |-  Pell14QR = ( x e. ( NN \ []NN ) |-> { y e. RR | E. z e. NN0 E. w e. ZZ ( y = ( z + ( ( sqrt ` x ) x. w ) ) /\ ( ( z ^ 2 ) - ( x x. ( w ^ 2 ) ) ) = 1 ) } ) |