| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cpell14qr | ⊢ Pell14QR | 
						
							| 1 |  | vx | ⊢ 𝑥 | 
						
							| 2 |  | cn | ⊢ ℕ | 
						
							| 3 |  | csquarenn | ⊢ ◻NN | 
						
							| 4 | 2 3 | cdif | ⊢ ( ℕ  ∖  ◻NN ) | 
						
							| 5 |  | vy | ⊢ 𝑦 | 
						
							| 6 |  | cr | ⊢ ℝ | 
						
							| 7 |  | vz | ⊢ 𝑧 | 
						
							| 8 |  | cn0 | ⊢ ℕ0 | 
						
							| 9 |  | vw | ⊢ 𝑤 | 
						
							| 10 |  | cz | ⊢ ℤ | 
						
							| 11 | 5 | cv | ⊢ 𝑦 | 
						
							| 12 | 7 | cv | ⊢ 𝑧 | 
						
							| 13 |  | caddc | ⊢  + | 
						
							| 14 |  | csqrt | ⊢ √ | 
						
							| 15 | 1 | cv | ⊢ 𝑥 | 
						
							| 16 | 15 14 | cfv | ⊢ ( √ ‘ 𝑥 ) | 
						
							| 17 |  | cmul | ⊢  · | 
						
							| 18 | 9 | cv | ⊢ 𝑤 | 
						
							| 19 | 16 18 17 | co | ⊢ ( ( √ ‘ 𝑥 )  ·  𝑤 ) | 
						
							| 20 | 12 19 13 | co | ⊢ ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) ) | 
						
							| 21 | 11 20 | wceq | ⊢ 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) ) | 
						
							| 22 |  | cexp | ⊢ ↑ | 
						
							| 23 |  | c2 | ⊢ 2 | 
						
							| 24 | 12 23 22 | co | ⊢ ( 𝑧 ↑ 2 ) | 
						
							| 25 |  | cmin | ⊢  − | 
						
							| 26 | 18 23 22 | co | ⊢ ( 𝑤 ↑ 2 ) | 
						
							| 27 | 15 26 17 | co | ⊢ ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) | 
						
							| 28 | 24 27 25 | co | ⊢ ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) ) | 
						
							| 29 |  | c1 | ⊢ 1 | 
						
							| 30 | 28 29 | wceq | ⊢ ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 | 
						
							| 31 | 21 30 | wa | ⊢ ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) | 
						
							| 32 | 31 9 10 | wrex | ⊢ ∃ 𝑤  ∈  ℤ ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) | 
						
							| 33 | 32 7 8 | wrex | ⊢ ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℤ ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) | 
						
							| 34 | 33 5 6 | crab | ⊢ { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℤ ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } | 
						
							| 35 | 1 4 34 | cmpt | ⊢ ( 𝑥  ∈  ( ℕ  ∖  ◻NN )  ↦  { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℤ ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) | 
						
							| 36 | 0 35 | wceq | ⊢ Pell14QR  =  ( 𝑥  ∈  ( ℕ  ∖  ◻NN )  ↦  { 𝑦  ∈  ℝ  ∣  ∃ 𝑧  ∈  ℕ0 ∃ 𝑤  ∈  ℤ ( 𝑦  =  ( 𝑧  +  ( ( √ ‘ 𝑥 )  ·  𝑤 ) )  ∧  ( ( 𝑧 ↑ 2 )  −  ( 𝑥  ·  ( 𝑤 ↑ 2 ) ) )  =  1 ) } ) |