Step |
Hyp |
Ref |
Expression |
0 |
|
cpell14qr |
⊢ Pell14QR |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cn |
⊢ ℕ |
3 |
|
csquarenn |
⊢ ◻NN |
4 |
2 3
|
cdif |
⊢ ( ℕ ∖ ◻NN ) |
5 |
|
vy |
⊢ 𝑦 |
6 |
|
cr |
⊢ ℝ |
7 |
|
vz |
⊢ 𝑧 |
8 |
|
cn0 |
⊢ ℕ0 |
9 |
|
vw |
⊢ 𝑤 |
10 |
|
cz |
⊢ ℤ |
11 |
5
|
cv |
⊢ 𝑦 |
12 |
7
|
cv |
⊢ 𝑧 |
13 |
|
caddc |
⊢ + |
14 |
|
csqrt |
⊢ √ |
15 |
1
|
cv |
⊢ 𝑥 |
16 |
15 14
|
cfv |
⊢ ( √ ‘ 𝑥 ) |
17 |
|
cmul |
⊢ · |
18 |
9
|
cv |
⊢ 𝑤 |
19 |
16 18 17
|
co |
⊢ ( ( √ ‘ 𝑥 ) · 𝑤 ) |
20 |
12 19 13
|
co |
⊢ ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) |
21 |
11 20
|
wceq |
⊢ 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) |
22 |
|
cexp |
⊢ ↑ |
23 |
|
c2 |
⊢ 2 |
24 |
12 23 22
|
co |
⊢ ( 𝑧 ↑ 2 ) |
25 |
|
cmin |
⊢ − |
26 |
18 23 22
|
co |
⊢ ( 𝑤 ↑ 2 ) |
27 |
15 26 17
|
co |
⊢ ( 𝑥 · ( 𝑤 ↑ 2 ) ) |
28 |
24 27 25
|
co |
⊢ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) |
29 |
|
c1 |
⊢ 1 |
30 |
28 29
|
wceq |
⊢ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 |
31 |
21 30
|
wa |
⊢ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 ) |
32 |
31 9 10
|
wrex |
⊢ ∃ 𝑤 ∈ ℤ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 ) |
33 |
32 7 8
|
wrex |
⊢ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℤ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 ) |
34 |
33 5 6
|
crab |
⊢ { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℤ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } |
35 |
1 4 34
|
cmpt |
⊢ ( 𝑥 ∈ ( ℕ ∖ ◻NN ) ↦ { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℤ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } ) |
36 |
0 35
|
wceq |
⊢ Pell14QR = ( 𝑥 ∈ ( ℕ ∖ ◻NN ) ↦ { 𝑦 ∈ ℝ ∣ ∃ 𝑧 ∈ ℕ0 ∃ 𝑤 ∈ ℤ ( 𝑦 = ( 𝑧 + ( ( √ ‘ 𝑥 ) · 𝑤 ) ) ∧ ( ( 𝑧 ↑ 2 ) − ( 𝑥 · ( 𝑤 ↑ 2 ) ) ) = 1 ) } ) |