Metamath Proof Explorer


Definition df-pell14qr

Description: Define the positive solutions of a Pell equation. (Contributed by Stefan O'Rear, 17-Sep-2014)

Ref Expression
Assertion df-pell14qr Pell14QR=xy|z0wy=z+xwz2xw2=1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpell14qr classPell14QR
1 vx setvarx
2 cn class
3 csquarenn class
4 2 3 cdif class
5 vy setvary
6 cr class
7 vz setvarz
8 cn0 class0
9 vw setvarw
10 cz class
11 5 cv setvary
12 7 cv setvarz
13 caddc class+
14 csqrt class
15 1 cv setvarx
16 15 14 cfv classx
17 cmul class×
18 9 cv setvarw
19 16 18 17 co classxw
20 12 19 13 co classz+xw
21 11 20 wceq wffy=z+xw
22 cexp class^
23 c2 class2
24 12 23 22 co classz2
25 cmin class
26 18 23 22 co classw2
27 15 26 17 co classxw2
28 24 27 25 co classz2xw2
29 c1 class1
30 28 29 wceq wffz2xw2=1
31 21 30 wa wffy=z+xwz2xw2=1
32 31 9 10 wrex wffwy=z+xwz2xw2=1
33 32 7 8 wrex wffz0wy=z+xwz2xw2=1
34 33 5 6 crab classy|z0wy=z+xwz2xw2=1
35 1 4 34 cmpt classxy|z0wy=z+xwz2xw2=1
36 0 35 wceq wffPell14QR=xy|z0wy=z+xwz2xw2=1