| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpmtr |
|- pmTrsp |
| 1 |
|
vd |
|- d |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vp |
|- p |
| 4 |
|
vy |
|- y |
| 5 |
1
|
cv |
|- d |
| 6 |
5
|
cpw |
|- ~P d |
| 7 |
4
|
cv |
|- y |
| 8 |
|
cen |
|- ~~ |
| 9 |
|
c2o |
|- 2o |
| 10 |
7 9 8
|
wbr |
|- y ~~ 2o |
| 11 |
10 4 6
|
crab |
|- { y e. ~P d | y ~~ 2o } |
| 12 |
|
vz |
|- z |
| 13 |
12
|
cv |
|- z |
| 14 |
3
|
cv |
|- p |
| 15 |
13 14
|
wcel |
|- z e. p |
| 16 |
13
|
csn |
|- { z } |
| 17 |
14 16
|
cdif |
|- ( p \ { z } ) |
| 18 |
17
|
cuni |
|- U. ( p \ { z } ) |
| 19 |
15 18 13
|
cif |
|- if ( z e. p , U. ( p \ { z } ) , z ) |
| 20 |
12 5 19
|
cmpt |
|- ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) |
| 21 |
3 11 20
|
cmpt |
|- ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) |
| 22 |
1 2 21
|
cmpt |
|- ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |
| 23 |
0 22
|
wceq |
|- pmTrsp = ( d e. _V |-> ( p e. { y e. ~P d | y ~~ 2o } |-> ( z e. d |-> if ( z e. p , U. ( p \ { z } ) , z ) ) ) ) |