| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cpmtr |
⊢ pmTrsp |
| 1 |
|
vd |
⊢ 𝑑 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vp |
⊢ 𝑝 |
| 4 |
|
vy |
⊢ 𝑦 |
| 5 |
1
|
cv |
⊢ 𝑑 |
| 6 |
5
|
cpw |
⊢ 𝒫 𝑑 |
| 7 |
4
|
cv |
⊢ 𝑦 |
| 8 |
|
cen |
⊢ ≈ |
| 9 |
|
c2o |
⊢ 2o |
| 10 |
7 9 8
|
wbr |
⊢ 𝑦 ≈ 2o |
| 11 |
10 4 6
|
crab |
⊢ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } |
| 12 |
|
vz |
⊢ 𝑧 |
| 13 |
12
|
cv |
⊢ 𝑧 |
| 14 |
3
|
cv |
⊢ 𝑝 |
| 15 |
13 14
|
wcel |
⊢ 𝑧 ∈ 𝑝 |
| 16 |
13
|
csn |
⊢ { 𝑧 } |
| 17 |
14 16
|
cdif |
⊢ ( 𝑝 ∖ { 𝑧 } ) |
| 18 |
17
|
cuni |
⊢ ∪ ( 𝑝 ∖ { 𝑧 } ) |
| 19 |
15 18 13
|
cif |
⊢ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) |
| 20 |
12 5 19
|
cmpt |
⊢ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) |
| 21 |
3 11 20
|
cmpt |
⊢ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) |
| 22 |
1 2 21
|
cmpt |
⊢ ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |
| 23 |
0 22
|
wceq |
⊢ pmTrsp = ( 𝑑 ∈ V ↦ ( 𝑝 ∈ { 𝑦 ∈ 𝒫 𝑑 ∣ 𝑦 ≈ 2o } ↦ ( 𝑧 ∈ 𝑑 ↦ if ( 𝑧 ∈ 𝑝 , ∪ ( 𝑝 ∖ { 𝑧 } ) , 𝑧 ) ) ) ) |