Metamath Proof Explorer


Theorem f1omvdmvd

Description: A permutation of any class moves a point which is moved to a different point which is moved. (Contributed by Stefan O'Rear, 22-Aug-2015)

Ref Expression
Assertion f1omvdmvd ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝑋 ∈ dom ( 𝐹 ∖ I ) )
2 f1ofn ( 𝐹 : 𝐴1-1-onto𝐴𝐹 Fn 𝐴 )
3 difss ( 𝐹 ∖ I ) ⊆ 𝐹
4 dmss ( ( 𝐹 ∖ I ) ⊆ 𝐹 → dom ( 𝐹 ∖ I ) ⊆ dom 𝐹 )
5 3 4 ax-mp dom ( 𝐹 ∖ I ) ⊆ dom 𝐹
6 f1odm ( 𝐹 : 𝐴1-1-onto𝐴 → dom 𝐹 = 𝐴 )
7 5 6 sseqtrid ( 𝐹 : 𝐴1-1-onto𝐴 → dom ( 𝐹 ∖ I ) ⊆ 𝐴 )
8 7 sselda ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝑋𝐴 )
9 fnelnfp ( ( 𝐹 Fn 𝐴𝑋𝐴 ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝑋 ) ≠ 𝑋 ) )
10 2 8 9 syl2an2r ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝑋 ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹𝑋 ) ≠ 𝑋 ) )
11 1 10 mpbid ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝑋 ) ≠ 𝑋 )
12 f1of1 ( 𝐹 : 𝐴1-1-onto𝐴𝐹 : 𝐴1-1𝐴 )
13 12 adantr ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 : 𝐴1-1𝐴 )
14 f1of ( 𝐹 : 𝐴1-1-onto𝐴𝐹 : 𝐴𝐴 )
15 14 adantr ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → 𝐹 : 𝐴𝐴 )
16 15 8 ffvelrnd ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝑋 ) ∈ 𝐴 )
17 f1fveq ( ( 𝐹 : 𝐴1-1𝐴 ∧ ( ( 𝐹𝑋 ) ∈ 𝐴𝑋𝐴 ) ) → ( ( 𝐹 ‘ ( 𝐹𝑋 ) ) = ( 𝐹𝑋 ) ↔ ( 𝐹𝑋 ) = 𝑋 ) )
18 13 16 8 17 syl12anc ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ ( 𝐹𝑋 ) ) = ( 𝐹𝑋 ) ↔ ( 𝐹𝑋 ) = 𝑋 ) )
19 18 necon3bid ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹 ‘ ( 𝐹𝑋 ) ) ≠ ( 𝐹𝑋 ) ↔ ( 𝐹𝑋 ) ≠ 𝑋 ) )
20 11 19 mpbird ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹 ‘ ( 𝐹𝑋 ) ) ≠ ( 𝐹𝑋 ) )
21 fnelnfp ( ( 𝐹 Fn 𝐴 ∧ ( 𝐹𝑋 ) ∈ 𝐴 ) → ( ( 𝐹𝑋 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( 𝐹𝑋 ) ) ≠ ( 𝐹𝑋 ) ) )
22 2 16 21 syl2an2r ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( ( 𝐹𝑋 ) ∈ dom ( 𝐹 ∖ I ) ↔ ( 𝐹 ‘ ( 𝐹𝑋 ) ) ≠ ( 𝐹𝑋 ) ) )
23 20 22 mpbird ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝑋 ) ∈ dom ( 𝐹 ∖ I ) )
24 eldifsn ( ( 𝐹𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) ↔ ( ( 𝐹𝑋 ) ∈ dom ( 𝐹 ∖ I ) ∧ ( 𝐹𝑋 ) ≠ 𝑋 ) )
25 23 11 24 sylanbrc ( ( 𝐹 : 𝐴1-1-onto𝐴𝑋 ∈ dom ( 𝐹 ∖ I ) ) → ( 𝐹𝑋 ) ∈ ( dom ( 𝐹 ∖ I ) ∖ { 𝑋 } ) )