| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cprjsp |
|- PrjSp |
| 1 |
|
vv |
|- v |
| 2 |
|
clvec |
|- LVec |
| 3 |
|
cbs |
|- Base |
| 4 |
1
|
cv |
|- v |
| 5 |
4 3
|
cfv |
|- ( Base ` v ) |
| 6 |
|
c0g |
|- 0g |
| 7 |
4 6
|
cfv |
|- ( 0g ` v ) |
| 8 |
7
|
csn |
|- { ( 0g ` v ) } |
| 9 |
5 8
|
cdif |
|- ( ( Base ` v ) \ { ( 0g ` v ) } ) |
| 10 |
|
vb |
|- b |
| 11 |
10
|
cv |
|- b |
| 12 |
|
vx |
|- x |
| 13 |
|
vy |
|- y |
| 14 |
12
|
cv |
|- x |
| 15 |
14 11
|
wcel |
|- x e. b |
| 16 |
13
|
cv |
|- y |
| 17 |
16 11
|
wcel |
|- y e. b |
| 18 |
15 17
|
wa |
|- ( x e. b /\ y e. b ) |
| 19 |
|
vl |
|- l |
| 20 |
|
csca |
|- Scalar |
| 21 |
4 20
|
cfv |
|- ( Scalar ` v ) |
| 22 |
21 3
|
cfv |
|- ( Base ` ( Scalar ` v ) ) |
| 23 |
19
|
cv |
|- l |
| 24 |
|
cvsca |
|- .s |
| 25 |
4 24
|
cfv |
|- ( .s ` v ) |
| 26 |
23 16 25
|
co |
|- ( l ( .s ` v ) y ) |
| 27 |
14 26
|
wceq |
|- x = ( l ( .s ` v ) y ) |
| 28 |
27 19 22
|
wrex |
|- E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) |
| 29 |
18 28
|
wa |
|- ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) |
| 30 |
29 12 13
|
copab |
|- { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } |
| 31 |
11 30
|
cqs |
|- ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) |
| 32 |
10 9 31
|
csb |
|- [_ ( ( Base ` v ) \ { ( 0g ` v ) } ) / b ]_ ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) |
| 33 |
1 2 32
|
cmpt |
|- ( v e. LVec |-> [_ ( ( Base ` v ) \ { ( 0g ` v ) } ) / b ]_ ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) ) |
| 34 |
0 33
|
wceq |
|- PrjSp = ( v e. LVec |-> [_ ( ( Base ` v ) \ { ( 0g ` v ) } ) / b ]_ ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) ) |