Step |
Hyp |
Ref |
Expression |
1 |
|
prjspval.b |
|- B = ( ( Base ` V ) \ { ( 0g ` V ) } ) |
2 |
|
prjspval.x |
|- .x. = ( .s ` V ) |
3 |
|
prjspval.s |
|- S = ( Scalar ` V ) |
4 |
|
prjspval.k |
|- K = ( Base ` S ) |
5 |
|
fvex |
|- ( Base ` v ) e. _V |
6 |
5
|
difexi |
|- ( ( Base ` v ) \ { ( 0g ` v ) } ) e. _V |
7 |
6
|
a1i |
|- ( v = V -> ( ( Base ` v ) \ { ( 0g ` v ) } ) e. _V ) |
8 |
|
fveq2 |
|- ( v = V -> ( Base ` v ) = ( Base ` V ) ) |
9 |
|
fveq2 |
|- ( v = V -> ( 0g ` v ) = ( 0g ` V ) ) |
10 |
9
|
sneqd |
|- ( v = V -> { ( 0g ` v ) } = { ( 0g ` V ) } ) |
11 |
8 10
|
difeq12d |
|- ( v = V -> ( ( Base ` v ) \ { ( 0g ` v ) } ) = ( ( Base ` V ) \ { ( 0g ` V ) } ) ) |
12 |
11 1
|
eqtr4di |
|- ( v = V -> ( ( Base ` v ) \ { ( 0g ` v ) } ) = B ) |
13 |
12
|
eqeq2d |
|- ( v = V -> ( b = ( ( Base ` v ) \ { ( 0g ` v ) } ) <-> b = B ) ) |
14 |
13
|
biimpd |
|- ( v = V -> ( b = ( ( Base ` v ) \ { ( 0g ` v ) } ) -> b = B ) ) |
15 |
14
|
imp |
|- ( ( v = V /\ b = ( ( Base ` v ) \ { ( 0g ` v ) } ) ) -> b = B ) |
16 |
14
|
imdistani |
|- ( ( v = V /\ b = ( ( Base ` v ) \ { ( 0g ` v ) } ) ) -> ( v = V /\ b = B ) ) |
17 |
|
eleq2 |
|- ( b = B -> ( x e. b <-> x e. B ) ) |
18 |
|
eleq2 |
|- ( b = B -> ( y e. b <-> y e. B ) ) |
19 |
17 18
|
anbi12d |
|- ( b = B -> ( ( x e. b /\ y e. b ) <-> ( x e. B /\ y e. B ) ) ) |
20 |
|
fveq2 |
|- ( v = V -> ( Scalar ` v ) = ( Scalar ` V ) ) |
21 |
20 3
|
eqtr4di |
|- ( v = V -> ( Scalar ` v ) = S ) |
22 |
21
|
fveq2d |
|- ( v = V -> ( Base ` ( Scalar ` v ) ) = ( Base ` S ) ) |
23 |
22 4
|
eqtr4di |
|- ( v = V -> ( Base ` ( Scalar ` v ) ) = K ) |
24 |
|
fveq2 |
|- ( v = V -> ( .s ` v ) = ( .s ` V ) ) |
25 |
24 2
|
eqtr4di |
|- ( v = V -> ( .s ` v ) = .x. ) |
26 |
25
|
oveqd |
|- ( v = V -> ( l ( .s ` v ) y ) = ( l .x. y ) ) |
27 |
26
|
eqeq2d |
|- ( v = V -> ( x = ( l ( .s ` v ) y ) <-> x = ( l .x. y ) ) ) |
28 |
23 27
|
rexeqbidv |
|- ( v = V -> ( E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) <-> E. l e. K x = ( l .x. y ) ) ) |
29 |
19 28
|
bi2anan9r |
|- ( ( v = V /\ b = B ) -> ( ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) <-> ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) ) ) |
30 |
16 29
|
syl |
|- ( ( v = V /\ b = ( ( Base ` v ) \ { ( 0g ` v ) } ) ) -> ( ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) <-> ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) ) ) |
31 |
30
|
opabbidv |
|- ( ( v = V /\ b = ( ( Base ` v ) \ { ( 0g ` v ) } ) ) -> { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } ) |
32 |
15 31
|
qseq12d |
|- ( ( v = V /\ b = ( ( Base ` v ) \ { ( 0g ` v ) } ) ) -> ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } ) ) |
33 |
7 32
|
csbied |
|- ( v = V -> [_ ( ( Base ` v ) \ { ( 0g ` v ) } ) / b ]_ ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } ) ) |
34 |
|
df-prjsp |
|- PrjSp = ( v e. LVec |-> [_ ( ( Base ` v ) \ { ( 0g ` v ) } ) / b ]_ ( b /. { <. x , y >. | ( ( x e. b /\ y e. b ) /\ E. l e. ( Base ` ( Scalar ` v ) ) x = ( l ( .s ` v ) y ) ) } ) ) |
35 |
|
fvex |
|- ( Base ` V ) e. _V |
36 |
35
|
difexi |
|- ( ( Base ` V ) \ { ( 0g ` V ) } ) e. _V |
37 |
1 36
|
eqeltri |
|- B e. _V |
38 |
37
|
qsex |
|- ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } ) e. _V |
39 |
33 34 38
|
fvmpt |
|- ( V e. LVec -> ( PrjSp ` V ) = ( B /. { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } ) ) |