Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } |
2 |
|
simpll |
|- ( ( ( x = X /\ y = Y ) /\ l = m ) -> x = X ) |
3 |
|
simpr |
|- ( ( ( x = X /\ y = Y ) /\ l = m ) -> l = m ) |
4 |
|
simplr |
|- ( ( ( x = X /\ y = Y ) /\ l = m ) -> y = Y ) |
5 |
3 4
|
oveq12d |
|- ( ( ( x = X /\ y = Y ) /\ l = m ) -> ( l .x. y ) = ( m .x. Y ) ) |
6 |
2 5
|
eqeq12d |
|- ( ( ( x = X /\ y = Y ) /\ l = m ) -> ( x = ( l .x. y ) <-> X = ( m .x. Y ) ) ) |
7 |
6
|
cbvrexdva |
|- ( ( x = X /\ y = Y ) -> ( E. l e. K x = ( l .x. y ) <-> E. m e. K X = ( m .x. Y ) ) ) |
8 |
7 1
|
brab2a |
|- ( X .~ Y <-> ( ( X e. B /\ Y e. B ) /\ E. m e. K X = ( m .x. Y ) ) ) |