Metamath Proof Explorer


Theorem prjsprel

Description: Utility theorem regarding the relation used in PrjSp . (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypothesis prjsprel.1
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) }
Assertion prjsprel
|- ( X .~ Y <-> ( ( X e. B /\ Y e. B ) /\ E. m e. K X = ( m .x. Y ) ) )

Proof

Step Hyp Ref Expression
1 prjsprel.1
 |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) }
2 simpll
 |-  ( ( ( x = X /\ y = Y ) /\ l = m ) -> x = X )
3 simpr
 |-  ( ( ( x = X /\ y = Y ) /\ l = m ) -> l = m )
4 simplr
 |-  ( ( ( x = X /\ y = Y ) /\ l = m ) -> y = Y )
5 3 4 oveq12d
 |-  ( ( ( x = X /\ y = Y ) /\ l = m ) -> ( l .x. y ) = ( m .x. Y ) )
6 2 5 eqeq12d
 |-  ( ( ( x = X /\ y = Y ) /\ l = m ) -> ( x = ( l .x. y ) <-> X = ( m .x. Y ) ) )
7 6 cbvrexdva
 |-  ( ( x = X /\ y = Y ) -> ( E. l e. K x = ( l .x. y ) <-> E. m e. K X = ( m .x. Y ) ) )
8 7 1 brab2a
 |-  ( X .~ Y <-> ( ( X e. B /\ Y e. B ) /\ E. m e. K X = ( m .x. Y ) ) )