| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  ∧  𝑙  =  𝑚 )  →  𝑥  =  𝑋 ) | 
						
							| 3 |  | simpr | ⊢ ( ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  ∧  𝑙  =  𝑚 )  →  𝑙  =  𝑚 ) | 
						
							| 4 |  | simplr | ⊢ ( ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  ∧  𝑙  =  𝑚 )  →  𝑦  =  𝑌 ) | 
						
							| 5 | 3 4 | oveq12d | ⊢ ( ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  ∧  𝑙  =  𝑚 )  →  ( 𝑙  ·  𝑦 )  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 6 | 2 5 | eqeq12d | ⊢ ( ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  ∧  𝑙  =  𝑚 )  →  ( 𝑥  =  ( 𝑙  ·  𝑦 )  ↔  𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 7 | 6 | cbvrexdva | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 )  ↔  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 8 | 7 1 | brab2a | ⊢ ( 𝑋  ∼  𝑌  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) |