Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → 𝑥 = 𝑋 ) |
3 |
|
simpr |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → 𝑙 = 𝑚 ) |
4 |
|
simplr |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → 𝑦 = 𝑌 ) |
5 |
3 4
|
oveq12d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → ( 𝑙 · 𝑦 ) = ( 𝑚 · 𝑌 ) ) |
6 |
2 5
|
eqeq12d |
⊢ ( ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → ( 𝑥 = ( 𝑙 · 𝑦 ) ↔ 𝑋 = ( 𝑚 · 𝑌 ) ) ) |
7 |
6
|
cbvrexdva |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ↔ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) ) |
8 |
7 1
|
brab2a |
⊢ ( 𝑋 ∼ 𝑌 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) ) |