Metamath Proof Explorer


Theorem prjsprel

Description: Utility theorem regarding the relation used in PrjSp . (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypothesis prjsprel.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) }
Assertion prjsprel ( 𝑋 𝑌 ↔ ( ( 𝑋𝐵𝑌𝐵 ) ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) )

Proof

Step Hyp Ref Expression
1 prjsprel.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) }
2 simpll ( ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → 𝑥 = 𝑋 )
3 simpr ( ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → 𝑙 = 𝑚 )
4 simplr ( ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → 𝑦 = 𝑌 )
5 3 4 oveq12d ( ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → ( 𝑙 · 𝑦 ) = ( 𝑚 · 𝑌 ) )
6 2 5 eqeq12d ( ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) ∧ 𝑙 = 𝑚 ) → ( 𝑥 = ( 𝑙 · 𝑦 ) ↔ 𝑋 = ( 𝑚 · 𝑌 ) ) )
7 6 cbvrexdva ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ∃ 𝑙𝐾 𝑥 = ( 𝑙 · 𝑦 ) ↔ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) )
8 7 1 brab2a ( 𝑋 𝑌 ↔ ( ( 𝑋𝐵𝑌𝐵 ) ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) )