| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspertr.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 3 |  | prjspertr.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑉 ) | 
						
							| 4 |  | prjspertr.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 5 |  | prjspertr.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 | 1 | prjsprel | ⊢ ( 𝑋  ∼  𝑌  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 7 | 6 | simprbi | ⊢ ( 𝑋  ∼  𝑌  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 8 | 7 | ad2antrl | ⊢ ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 9 |  | simplrr | ⊢ ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  𝑌  ∼  𝑍 ) | 
						
							| 10 | 1 | prjsprel | ⊢ ( 𝑌  ∼  𝑍  ↔  ( ( 𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ∃ 𝑛  ∈  𝐾 𝑌  =  ( 𝑛  ·  𝑍 ) ) ) | 
						
							| 11 | 10 | simprbi | ⊢ ( 𝑌  ∼  𝑍  →  ∃ 𝑛  ∈  𝐾 𝑌  =  ( 𝑛  ·  𝑍 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  ∃ 𝑛  ∈  𝐾 𝑌  =  ( 𝑛  ·  𝑍 ) ) | 
						
							| 13 |  | simplrl | ⊢ ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) ) )  →  𝑋  ∼  𝑌 ) | 
						
							| 14 | 13 | anassrs | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑋  ∼  𝑌 ) | 
						
							| 15 |  | simpll | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 16 | 6 15 | sylbi | ⊢ ( 𝑋  ∼  𝑌  →  𝑋  ∈  𝐵 ) | 
						
							| 17 | 14 16 | syl | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 18 | 9 | adantr | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑌  ∼  𝑍 ) | 
						
							| 19 |  | simplr | ⊢ ( ( ( 𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ∃ 𝑛  ∈  𝐾 𝑌  =  ( 𝑛  ·  𝑍 ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 20 | 10 19 | sylbi | ⊢ ( 𝑌  ∼  𝑍  →  𝑍  ∈  𝐵 ) | 
						
							| 21 | 18 20 | syl | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑍  ∈  𝐵 ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑜  =  ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  →  ( 𝑜  ·  𝑍 )  =  ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  ·  𝑍 ) ) | 
						
							| 23 | 22 | eqeq2d | ⊢ ( 𝑜  =  ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  →  ( 𝑋  =  ( 𝑜  ·  𝑍 )  ↔  𝑋  =  ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  ·  𝑍 ) ) ) | 
						
							| 24 |  | eqid | ⊢ ( .r ‘ 𝑆 )  =  ( .r ‘ 𝑆 ) | 
						
							| 25 | 3 | lmodring | ⊢ ( 𝑉  ∈  LMod  →  𝑆  ∈  Ring ) | 
						
							| 26 | 25 | ad3antrrr | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑆  ∈  Ring ) | 
						
							| 27 |  | simplrl | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑚  ∈  𝐾 ) | 
						
							| 28 |  | simprl | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑛  ∈  𝐾 ) | 
						
							| 29 | 5 24 26 27 28 | ringcld | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  ∈  𝐾 ) | 
						
							| 30 |  | simprr | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑌  =  ( 𝑛  ·  𝑍 ) ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  ( 𝑚  ·  𝑌 )  =  ( 𝑚  ·  ( 𝑛  ·  𝑍 ) ) ) | 
						
							| 32 |  | simplrr | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 33 |  | simplll | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑉  ∈  LMod ) | 
						
							| 34 |  | eldifi | ⊢ ( 𝑍  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑍  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 35 | 34 2 | eleq2s | ⊢ ( 𝑍  ∈  𝐵  →  𝑍  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 36 | 21 35 | syl | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑍  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) | 
						
							| 38 | 37 3 4 5 24 | lmodvsass | ⊢ ( ( 𝑉  ∈  LMod  ∧  ( 𝑚  ∈  𝐾  ∧  𝑛  ∈  𝐾  ∧  𝑍  ∈  ( Base ‘ 𝑉 ) ) )  →  ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  ·  𝑍 )  =  ( 𝑚  ·  ( 𝑛  ·  𝑍 ) ) ) | 
						
							| 39 | 33 27 28 36 38 | syl13anc | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  ·  𝑍 )  =  ( 𝑚  ·  ( 𝑛  ·  𝑍 ) ) ) | 
						
							| 40 | 31 32 39 | 3eqtr4d | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑋  =  ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 )  ·  𝑍 ) ) | 
						
							| 41 | 23 29 40 | rspcedvdw | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  ∃ 𝑜  ∈  𝐾 𝑋  =  ( 𝑜  ·  𝑍 ) ) | 
						
							| 42 | 1 | prjsprel | ⊢ ( 𝑋  ∼  𝑍  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 )  ∧  ∃ 𝑜  ∈  𝐾 𝑋  =  ( 𝑜  ·  𝑍 ) ) ) | 
						
							| 43 | 17 21 41 42 | syl21anbrc | ⊢ ( ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  ∧  ( 𝑛  ∈  𝐾  ∧  𝑌  =  ( 𝑛  ·  𝑍 ) ) )  →  𝑋  ∼  𝑍 ) | 
						
							| 44 | 12 43 | rexlimddv | ⊢ ( ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  ∧  ( 𝑚  ∈  𝐾  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) ) )  →  𝑋  ∼  𝑍 ) | 
						
							| 45 | 8 44 | rexlimddv | ⊢ ( ( 𝑉  ∈  LMod  ∧  ( 𝑋  ∼  𝑌  ∧  𝑌  ∼  𝑍 ) )  →  𝑋  ∼  𝑍 ) |