| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjsprel.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
| 2 |
|
prjspertr.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
| 3 |
|
prjspertr.s |
⊢ 𝑆 = ( Scalar ‘ 𝑉 ) |
| 4 |
|
prjspertr.x |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
| 5 |
|
prjspertr.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 6 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 𝑌 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) ) |
| 7 |
6
|
simprbi |
⊢ ( 𝑋 ∼ 𝑌 → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 8 |
7
|
ad2antrl |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 9 |
|
simplrr |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) → 𝑌 ∼ 𝑍 ) |
| 10 |
1
|
prjsprel |
⊢ ( 𝑌 ∼ 𝑍 ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑍 ) ) ) |
| 11 |
10
|
simprbi |
⊢ ( 𝑌 ∼ 𝑍 → ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑍 ) ) |
| 12 |
9 11
|
syl |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) → ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑍 ) ) |
| 13 |
|
simplrl |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) ) → 𝑋 ∼ 𝑌 ) |
| 14 |
13
|
anassrs |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑋 ∼ 𝑌 ) |
| 15 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 16 |
6 15
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → 𝑋 ∈ 𝐵 ) |
| 17 |
14 16
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑋 ∈ 𝐵 ) |
| 18 |
9
|
adantr |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑌 ∼ 𝑍 ) |
| 19 |
|
simplr |
⊢ ( ( ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑍 ) ) → 𝑍 ∈ 𝐵 ) |
| 20 |
10 19
|
sylbi |
⊢ ( 𝑌 ∼ 𝑍 → 𝑍 ∈ 𝐵 ) |
| 21 |
18 20
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑍 ∈ 𝐵 ) |
| 22 |
|
oveq1 |
⊢ ( 𝑜 = ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) → ( 𝑜 · 𝑍 ) = ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) · 𝑍 ) ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝑜 = ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) → ( 𝑋 = ( 𝑜 · 𝑍 ) ↔ 𝑋 = ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) · 𝑍 ) ) ) |
| 24 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 25 |
3
|
lmodring |
⊢ ( 𝑉 ∈ LMod → 𝑆 ∈ Ring ) |
| 26 |
25
|
ad3antrrr |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑆 ∈ Ring ) |
| 27 |
|
simplrl |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑚 ∈ 𝐾 ) |
| 28 |
|
simprl |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑛 ∈ 𝐾 ) |
| 29 |
5 24 26 27 28
|
ringcld |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) ∈ 𝐾 ) |
| 30 |
|
simprr |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑌 = ( 𝑛 · 𝑍 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → ( 𝑚 · 𝑌 ) = ( 𝑚 · ( 𝑛 · 𝑍 ) ) ) |
| 32 |
|
simplrr |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 33 |
|
simplll |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑉 ∈ LMod ) |
| 34 |
|
eldifi |
⊢ ( 𝑍 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑍 ∈ ( Base ‘ 𝑉 ) ) |
| 35 |
34 2
|
eleq2s |
⊢ ( 𝑍 ∈ 𝐵 → 𝑍 ∈ ( Base ‘ 𝑉 ) ) |
| 36 |
21 35
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑍 ∈ ( Base ‘ 𝑉 ) ) |
| 37 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
| 38 |
37 3 4 5 24
|
lmodvsass |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑛 ∈ 𝐾 ∧ 𝑍 ∈ ( Base ‘ 𝑉 ) ) ) → ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) · 𝑍 ) = ( 𝑚 · ( 𝑛 · 𝑍 ) ) ) |
| 39 |
33 27 28 36 38
|
syl13anc |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) · 𝑍 ) = ( 𝑚 · ( 𝑛 · 𝑍 ) ) ) |
| 40 |
31 32 39
|
3eqtr4d |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑋 = ( ( 𝑚 ( .r ‘ 𝑆 ) 𝑛 ) · 𝑍 ) ) |
| 41 |
23 29 40
|
rspcedvdw |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → ∃ 𝑜 ∈ 𝐾 𝑋 = ( 𝑜 · 𝑍 ) ) |
| 42 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 𝑍 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ∧ ∃ 𝑜 ∈ 𝐾 𝑋 = ( 𝑜 · 𝑍 ) ) ) |
| 43 |
17 21 41 42
|
syl21anbrc |
⊢ ( ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) ∧ ( 𝑛 ∈ 𝐾 ∧ 𝑌 = ( 𝑛 · 𝑍 ) ) ) → 𝑋 ∼ 𝑍 ) |
| 44 |
12 43
|
rexlimddv |
⊢ ( ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) ∧ ( 𝑚 ∈ 𝐾 ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ) → 𝑋 ∼ 𝑍 ) |
| 45 |
8 44
|
rexlimddv |
⊢ ( ( 𝑉 ∈ LMod ∧ ( 𝑋 ∼ 𝑌 ∧ 𝑌 ∼ 𝑍 ) ) → 𝑋 ∼ 𝑍 ) |