Description: The relation in PrjSp is transitive. (Contributed by Steven Nguyen, 1-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prjsprel.1 | |
|
prjspertr.b | |
||
prjspertr.s | |
||
prjspertr.x | |
||
prjspertr.k | |
||
Assertion | prjspertr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | |
|
2 | prjspertr.b | |
|
3 | prjspertr.s | |
|
4 | prjspertr.x | |
|
5 | prjspertr.k | |
|
6 | 1 | prjsprel | |
7 | 6 | simprbi | |
8 | 7 | ad2antrl | |
9 | simplrr | |
|
10 | 1 | prjsprel | |
11 | 10 | simprbi | |
12 | 9 11 | syl | |
13 | simplrl | |
|
14 | 13 | anassrs | |
15 | simpll | |
|
16 | 6 15 | sylbi | |
17 | 14 16 | syl | |
18 | 9 | adantr | |
19 | simplr | |
|
20 | 10 19 | sylbi | |
21 | 18 20 | syl | |
22 | 3 | lmodring | |
23 | 22 | ad3antrrr | |
24 | simplrl | |
|
25 | simprl | |
|
26 | eqid | |
|
27 | 5 26 | ringcl | |
28 | 23 24 25 27 | syl3anc | |
29 | oveq1 | |
|
30 | 29 | eqeq2d | |
31 | 30 | adantl | |
32 | simprr | |
|
33 | 32 | oveq2d | |
34 | simplrr | |
|
35 | simplll | |
|
36 | eldifi | |
|
37 | 36 2 | eleq2s | |
38 | 21 37 | syl | |
39 | eqid | |
|
40 | 39 3 4 5 26 | lmodvsass | |
41 | 35 24 25 38 40 | syl13anc | |
42 | 33 34 41 | 3eqtr4d | |
43 | 28 31 42 | rspcedvd | |
44 | 1 | prjsprel | |
45 | 17 21 43 44 | syl21anbrc | |
46 | 12 45 | rexlimddv | |
47 | 8 46 | rexlimddv | |