Metamath Proof Explorer


Theorem prjspertr

Description: The relation in PrjSp is transitive. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Hypotheses prjsprel.1 ˙=xy|xByBlKx=l·˙y
prjspertr.b B=BaseV0V
prjspertr.s S=ScalarV
prjspertr.x ·˙=V
prjspertr.k K=BaseS
Assertion prjspertr VLModX˙YY˙ZX˙Z

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙=xy|xByBlKx=l·˙y
2 prjspertr.b B=BaseV0V
3 prjspertr.s S=ScalarV
4 prjspertr.x ·˙=V
5 prjspertr.k K=BaseS
6 1 prjsprel X˙YXBYBmKX=m·˙Y
7 6 simprbi X˙YmKX=m·˙Y
8 7 ad2antrl VLModX˙YY˙ZmKX=m·˙Y
9 simplrr VLModX˙YY˙ZmKX=m·˙YY˙Z
10 1 prjsprel Y˙ZYBZBnKY=n·˙Z
11 10 simprbi Y˙ZnKY=n·˙Z
12 9 11 syl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙Z
13 simplrl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZX˙Y
14 13 anassrs VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZX˙Y
15 simpll XBYBmKX=m·˙YXB
16 6 15 sylbi X˙YXB
17 14 16 syl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZXB
18 9 adantr VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZY˙Z
19 simplr YBZBnKY=n·˙ZZB
20 10 19 sylbi Y˙ZZB
21 18 20 syl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZZB
22 3 lmodring VLModSRing
23 22 ad3antrrr VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZSRing
24 simplrl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZmK
25 simprl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZnK
26 eqid S=S
27 5 26 ringcl SRingmKnKmSnK
28 23 24 25 27 syl3anc VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZmSnK
29 oveq1 o=mSno·˙Z=mSn·˙Z
30 29 eqeq2d o=mSnX=o·˙ZX=mSn·˙Z
31 30 adantl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙Zo=mSnX=o·˙ZX=mSn·˙Z
32 simprr VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZY=n·˙Z
33 32 oveq2d VLModX˙YY˙ZmKX=m·˙YnKY=n·˙Zm·˙Y=m·˙n·˙Z
34 simplrr VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZX=m·˙Y
35 simplll VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZVLMod
36 eldifi ZBaseV0VZBaseV
37 36 2 eleq2s ZBZBaseV
38 21 37 syl VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZZBaseV
39 eqid BaseV=BaseV
40 39 3 4 5 26 lmodvsass VLModmKnKZBaseVmSn·˙Z=m·˙n·˙Z
41 35 24 25 38 40 syl13anc VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZmSn·˙Z=m·˙n·˙Z
42 33 34 41 3eqtr4d VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZX=mSn·˙Z
43 28 31 42 rspcedvd VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZoKX=o·˙Z
44 1 prjsprel X˙ZXBZBoKX=o·˙Z
45 17 21 43 44 syl21anbrc VLModX˙YY˙ZmKX=m·˙YnKY=n·˙ZX˙Z
46 12 45 rexlimddv VLModX˙YY˙ZmKX=m·˙YX˙Z
47 8 46 rexlimddv VLModX˙YY˙ZX˙Z