Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
|
2 |
|
prjspertr.b |
|
3 |
|
prjspertr.s |
|
4 |
|
prjspertr.x |
|
5 |
|
prjspertr.k |
|
6 |
1
|
prjsprel |
|
7 |
6
|
simprbi |
|
8 |
7
|
ad2antrl |
|
9 |
|
simplrr |
|
10 |
1
|
prjsprel |
|
11 |
10
|
simprbi |
|
12 |
9 11
|
syl |
|
13 |
|
simplrl |
|
14 |
13
|
anassrs |
|
15 |
|
simpll |
|
16 |
6 15
|
sylbi |
|
17 |
14 16
|
syl |
|
18 |
9
|
adantr |
|
19 |
|
simplr |
|
20 |
10 19
|
sylbi |
|
21 |
18 20
|
syl |
|
22 |
3
|
lmodring |
|
23 |
22
|
ad3antrrr |
|
24 |
|
simplrl |
|
25 |
|
simprl |
|
26 |
|
eqid |
|
27 |
5 26
|
ringcl |
|
28 |
23 24 25 27
|
syl3anc |
|
29 |
|
oveq1 |
|
30 |
29
|
eqeq2d |
|
31 |
30
|
adantl |
|
32 |
|
simprr |
|
33 |
32
|
oveq2d |
|
34 |
|
simplrr |
|
35 |
|
simplll |
|
36 |
|
eldifi |
|
37 |
36 2
|
eleq2s |
|
38 |
21 37
|
syl |
|
39 |
|
eqid |
|
40 |
39 3 4 5 26
|
lmodvsass |
|
41 |
35 24 25 38 40
|
syl13anc |
|
42 |
33 34 41
|
3eqtr4d |
|
43 |
28 31 42
|
rspcedvd |
|
44 |
1
|
prjsprel |
|
45 |
17 21 43 44
|
syl21anbrc |
|
46 |
12 45
|
rexlimddv |
|
47 |
8 46
|
rexlimddv |
|