Description: The relation in PrjSp is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prjsprel.1 | |
|
prjspertr.b | |
||
prjspertr.s | |
||
prjspertr.x | |
||
prjspertr.k | |
||
Assertion | prjsperref | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | |
|
2 | prjspertr.b | |
|
3 | prjspertr.s | |
|
4 | prjspertr.x | |
|
5 | prjspertr.k | |
|
6 | eqid | |
|
7 | 3 5 6 | lmod1cl | |
8 | 7 | adantr | |
9 | oveq1 | |
|
10 | 9 | eqeq2d | |
11 | 10 | adantl | |
12 | eldifi | |
|
13 | 12 2 | eleq2s | |
14 | eqid | |
|
15 | 14 3 4 6 | lmodvs1 | |
16 | 13 15 | sylan2 | |
17 | 16 | eqcomd | |
18 | 8 11 17 | rspcedvd | |
19 | 18 | ex | |
20 | 19 | pm4.71d | |
21 | pm4.24 | |
|
22 | 21 | anbi1i | |
23 | 1 | prjsprel | |
24 | 22 23 | bitr4i | |
25 | 20 24 | bitrdi | |