Metamath Proof Explorer


Theorem prjsperref

Description: The relation in PrjSp is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023)

Ref Expression
Hypotheses prjsprel.1 ˙=xy|xByBlKx=l·˙y
prjspertr.b B=BaseV0V
prjspertr.s S=ScalarV
prjspertr.x ·˙=V
prjspertr.k K=BaseS
Assertion prjsperref VLModXBX˙X

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙=xy|xByBlKx=l·˙y
2 prjspertr.b B=BaseV0V
3 prjspertr.s S=ScalarV
4 prjspertr.x ·˙=V
5 prjspertr.k K=BaseS
6 eqid 1S=1S
7 3 5 6 lmod1cl VLMod1SK
8 7 adantr VLModXB1SK
9 oveq1 m=1Sm·˙X=1S·˙X
10 9 eqeq2d m=1SX=m·˙XX=1S·˙X
11 10 adantl VLModXBm=1SX=m·˙XX=1S·˙X
12 eldifi XBaseV0VXBaseV
13 12 2 eleq2s XBXBaseV
14 eqid BaseV=BaseV
15 14 3 4 6 lmodvs1 VLModXBaseV1S·˙X=X
16 13 15 sylan2 VLModXB1S·˙X=X
17 16 eqcomd VLModXBX=1S·˙X
18 8 11 17 rspcedvd VLModXBmKX=m·˙X
19 18 ex VLModXBmKX=m·˙X
20 19 pm4.71d VLModXBXBmKX=m·˙X
21 pm4.24 XBXBXB
22 21 anbi1i XBmKX=m·˙XXBXBmKX=m·˙X
23 1 prjsprel X˙XXBXBmKX=m·˙X
24 22 23 bitr4i XBmKX=m·˙XX˙X
25 20 24 bitrdi VLModXBX˙X