| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspertr.b |  |-  B = ( ( Base ` V ) \ { ( 0g ` V ) } ) | 
						
							| 3 |  | prjspertr.s |  |-  S = ( Scalar ` V ) | 
						
							| 4 |  | prjspertr.x |  |-  .x. = ( .s ` V ) | 
						
							| 5 |  | prjspertr.k |  |-  K = ( Base ` S ) | 
						
							| 6 |  | oveq1 |  |-  ( m = ( 1r ` S ) -> ( m .x. X ) = ( ( 1r ` S ) .x. X ) ) | 
						
							| 7 | 6 | eqeq2d |  |-  ( m = ( 1r ` S ) -> ( X = ( m .x. X ) <-> X = ( ( 1r ` S ) .x. X ) ) ) | 
						
							| 8 |  | eqid |  |-  ( 1r ` S ) = ( 1r ` S ) | 
						
							| 9 | 3 5 8 | lmod1cl |  |-  ( V e. LMod -> ( 1r ` S ) e. K ) | 
						
							| 10 | 9 | adantr |  |-  ( ( V e. LMod /\ X e. B ) -> ( 1r ` S ) e. K ) | 
						
							| 11 |  | eldifi |  |-  ( X e. ( ( Base ` V ) \ { ( 0g ` V ) } ) -> X e. ( Base ` V ) ) | 
						
							| 12 | 11 2 | eleq2s |  |-  ( X e. B -> X e. ( Base ` V ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` V ) = ( Base ` V ) | 
						
							| 14 | 13 3 4 8 | lmodvs1 |  |-  ( ( V e. LMod /\ X e. ( Base ` V ) ) -> ( ( 1r ` S ) .x. X ) = X ) | 
						
							| 15 | 12 14 | sylan2 |  |-  ( ( V e. LMod /\ X e. B ) -> ( ( 1r ` S ) .x. X ) = X ) | 
						
							| 16 | 15 | eqcomd |  |-  ( ( V e. LMod /\ X e. B ) -> X = ( ( 1r ` S ) .x. X ) ) | 
						
							| 17 | 7 10 16 | rspcedvdw |  |-  ( ( V e. LMod /\ X e. B ) -> E. m e. K X = ( m .x. X ) ) | 
						
							| 18 | 17 | ex |  |-  ( V e. LMod -> ( X e. B -> E. m e. K X = ( m .x. X ) ) ) | 
						
							| 19 | 18 | pm4.71d |  |-  ( V e. LMod -> ( X e. B <-> ( X e. B /\ E. m e. K X = ( m .x. X ) ) ) ) | 
						
							| 20 |  | pm4.24 |  |-  ( X e. B <-> ( X e. B /\ X e. B ) ) | 
						
							| 21 | 20 | anbi1i |  |-  ( ( X e. B /\ E. m e. K X = ( m .x. X ) ) <-> ( ( X e. B /\ X e. B ) /\ E. m e. K X = ( m .x. X ) ) ) | 
						
							| 22 | 1 | prjsprel |  |-  ( X .~ X <-> ( ( X e. B /\ X e. B ) /\ E. m e. K X = ( m .x. X ) ) ) | 
						
							| 23 | 21 22 | bitr4i |  |-  ( ( X e. B /\ E. m e. K X = ( m .x. X ) ) <-> X .~ X ) | 
						
							| 24 | 19 23 | bitrdi |  |-  ( V e. LMod -> ( X e. B <-> X .~ X ) ) |