| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspertr.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 3 |  | prjspertr.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑉 ) | 
						
							| 4 |  | prjspertr.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 5 |  | prjspertr.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | oveq1 | ⊢ ( 𝑚  =  ( 1r ‘ 𝑆 )  →  ( 𝑚  ·  𝑋 )  =  ( ( 1r ‘ 𝑆 )  ·  𝑋 ) ) | 
						
							| 7 | 6 | eqeq2d | ⊢ ( 𝑚  =  ( 1r ‘ 𝑆 )  →  ( 𝑋  =  ( 𝑚  ·  𝑋 )  ↔  𝑋  =  ( ( 1r ‘ 𝑆 )  ·  𝑋 ) ) ) | 
						
							| 8 |  | eqid | ⊢ ( 1r ‘ 𝑆 )  =  ( 1r ‘ 𝑆 ) | 
						
							| 9 | 3 5 8 | lmod1cl | ⊢ ( 𝑉  ∈  LMod  →  ( 1r ‘ 𝑆 )  ∈  𝐾 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝑉  ∈  LMod  ∧  𝑋  ∈  𝐵 )  →  ( 1r ‘ 𝑆 )  ∈  𝐾 ) | 
						
							| 11 |  | eldifi | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 12 | 11 2 | eleq2s | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 13 |  | eqid | ⊢ ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) | 
						
							| 14 | 13 3 4 8 | lmodvs1 | ⊢ ( ( 𝑉  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ 𝑉 ) )  →  ( ( 1r ‘ 𝑆 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 15 | 12 14 | sylan2 | ⊢ ( ( 𝑉  ∈  LMod  ∧  𝑋  ∈  𝐵 )  →  ( ( 1r ‘ 𝑆 )  ·  𝑋 )  =  𝑋 ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( ( 𝑉  ∈  LMod  ∧  𝑋  ∈  𝐵 )  →  𝑋  =  ( ( 1r ‘ 𝑆 )  ·  𝑋 ) ) | 
						
							| 17 | 7 10 16 | rspcedvdw | ⊢ ( ( 𝑉  ∈  LMod  ∧  𝑋  ∈  𝐵 )  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) ) | 
						
							| 18 | 17 | ex | ⊢ ( 𝑉  ∈  LMod  →  ( 𝑋  ∈  𝐵  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 19 | 18 | pm4.71d | ⊢ ( 𝑉  ∈  LMod  →  ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∈  𝐵  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) ) ) ) | 
						
							| 20 |  | pm4.24 | ⊢ ( 𝑋  ∈  𝐵  ↔  ( 𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 21 | 20 | anbi1i | ⊢ ( ( 𝑋  ∈  𝐵  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) )  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 22 | 1 | prjsprel | ⊢ ( 𝑋  ∼  𝑋  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) ) ) | 
						
							| 23 | 21 22 | bitr4i | ⊢ ( ( 𝑋  ∈  𝐵  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑋 ) )  ↔  𝑋  ∼  𝑋 ) | 
						
							| 24 | 19 23 | bitrdi | ⊢ ( 𝑉  ∈  LMod  →  ( 𝑋  ∈  𝐵  ↔  𝑋  ∼  𝑋 ) ) |