Metamath Proof Explorer


Theorem prjsperref

Description: The relation in PrjSp is reflexive. (Contributed by Steven Nguyen, 30-Apr-2023)

Ref Expression
Hypotheses prjsprel.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) }
prjspertr.b 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g𝑉 ) } )
prjspertr.s 𝑆 = ( Scalar ‘ 𝑉 )
prjspertr.x · = ( ·𝑠𝑉 )
prjspertr.k 𝐾 = ( Base ‘ 𝑆 )
Assertion prjsperref ( 𝑉 ∈ LMod → ( 𝑋𝐵𝑋 𝑋 ) )

Proof

Step Hyp Ref Expression
1 prjsprel.1 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( ( 𝑥𝐵𝑦𝐵 ) ∧ ∃ 𝑙𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) }
2 prjspertr.b 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g𝑉 ) } )
3 prjspertr.s 𝑆 = ( Scalar ‘ 𝑉 )
4 prjspertr.x · = ( ·𝑠𝑉 )
5 prjspertr.k 𝐾 = ( Base ‘ 𝑆 )
6 oveq1 ( 𝑚 = ( 1r𝑆 ) → ( 𝑚 · 𝑋 ) = ( ( 1r𝑆 ) · 𝑋 ) )
7 6 eqeq2d ( 𝑚 = ( 1r𝑆 ) → ( 𝑋 = ( 𝑚 · 𝑋 ) ↔ 𝑋 = ( ( 1r𝑆 ) · 𝑋 ) ) )
8 eqid ( 1r𝑆 ) = ( 1r𝑆 )
9 3 5 8 lmod1cl ( 𝑉 ∈ LMod → ( 1r𝑆 ) ∈ 𝐾 )
10 9 adantr ( ( 𝑉 ∈ LMod ∧ 𝑋𝐵 ) → ( 1r𝑆 ) ∈ 𝐾 )
11 eldifi ( 𝑋 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g𝑉 ) } ) → 𝑋 ∈ ( Base ‘ 𝑉 ) )
12 11 2 eleq2s ( 𝑋𝐵𝑋 ∈ ( Base ‘ 𝑉 ) )
13 eqid ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 )
14 13 3 4 8 lmodvs1 ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑉 ) ) → ( ( 1r𝑆 ) · 𝑋 ) = 𝑋 )
15 12 14 sylan2 ( ( 𝑉 ∈ LMod ∧ 𝑋𝐵 ) → ( ( 1r𝑆 ) · 𝑋 ) = 𝑋 )
16 15 eqcomd ( ( 𝑉 ∈ LMod ∧ 𝑋𝐵 ) → 𝑋 = ( ( 1r𝑆 ) · 𝑋 ) )
17 7 10 16 rspcedvdw ( ( 𝑉 ∈ LMod ∧ 𝑋𝐵 ) → ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) )
18 17 ex ( 𝑉 ∈ LMod → ( 𝑋𝐵 → ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) )
19 18 pm4.71d ( 𝑉 ∈ LMod → ( 𝑋𝐵 ↔ ( 𝑋𝐵 ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ) )
20 pm4.24 ( 𝑋𝐵 ↔ ( 𝑋𝐵𝑋𝐵 ) )
21 20 anbi1i ( ( 𝑋𝐵 ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ↔ ( ( 𝑋𝐵𝑋𝐵 ) ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) )
22 1 prjsprel ( 𝑋 𝑋 ↔ ( ( 𝑋𝐵𝑋𝐵 ) ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) )
23 21 22 bitr4i ( ( 𝑋𝐵 ∧ ∃ 𝑚𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ↔ 𝑋 𝑋 )
24 19 23 bitrdi ( 𝑉 ∈ LMod → ( 𝑋𝐵𝑋 𝑋 ) )