Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspertr.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
3 |
|
prjspertr.s |
⊢ 𝑆 = ( Scalar ‘ 𝑉 ) |
4 |
|
prjspertr.x |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
5 |
|
prjspertr.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
7 |
3 5 6
|
lmod1cl |
⊢ ( 𝑉 ∈ LMod → ( 1r ‘ 𝑆 ) ∈ 𝐾 ) |
8 |
7
|
adantr |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( 1r ‘ 𝑆 ) ∈ 𝐾 ) |
9 |
|
oveq1 |
⊢ ( 𝑚 = ( 1r ‘ 𝑆 ) → ( 𝑚 · 𝑋 ) = ( ( 1r ‘ 𝑆 ) · 𝑋 ) ) |
10 |
9
|
eqeq2d |
⊢ ( 𝑚 = ( 1r ‘ 𝑆 ) → ( 𝑋 = ( 𝑚 · 𝑋 ) ↔ 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑋 ) ) ) |
11 |
10
|
adantl |
⊢ ( ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑚 = ( 1r ‘ 𝑆 ) ) → ( 𝑋 = ( 𝑚 · 𝑋 ) ↔ 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑋 ) ) ) |
12 |
|
eldifi |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
13 |
12 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
14 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
15 |
14 3 4 6
|
lmodvs1 |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ 𝑉 ) ) → ( ( 1r ‘ 𝑆 ) · 𝑋 ) = 𝑋 ) |
16 |
13 15
|
sylan2 |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ( ( 1r ‘ 𝑆 ) · 𝑋 ) = 𝑋 ) |
17 |
16
|
eqcomd |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → 𝑋 = ( ( 1r ‘ 𝑆 ) · 𝑋 ) ) |
18 |
8 11 17
|
rspcedvd |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑋 ∈ 𝐵 ) → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) |
19 |
18
|
ex |
⊢ ( 𝑉 ∈ LMod → ( 𝑋 ∈ 𝐵 → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ) |
20 |
19
|
pm4.71d |
⊢ ( 𝑉 ∈ LMod → ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ) ) |
21 |
|
pm4.24 |
⊢ ( 𝑋 ∈ 𝐵 ↔ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
22 |
21
|
anbi1i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ) |
23 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 𝑋 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ) |
24 |
22 23
|
bitr4i |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑋 ) ) ↔ 𝑋 ∼ 𝑋 ) |
25 |
20 24
|
bitrdi |
⊢ ( 𝑉 ∈ LMod → ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∼ 𝑋 ) ) |