Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
2 |
|
prjspertr.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
3 |
|
prjspertr.s |
⊢ 𝑆 = ( Scalar ‘ 𝑉 ) |
4 |
|
prjspertr.x |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
5 |
|
prjspertr.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
6 |
|
simpllr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∼ 𝑌 ) |
7 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 𝑌 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) ) |
8 |
|
pm3.22 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
10 |
7 9
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
11 |
6 10
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
12 |
|
simplll |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑉 ∈ LVec ) |
13 |
3
|
lvecdrng |
⊢ ( 𝑉 ∈ LVec → 𝑆 ∈ DivRing ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑆 ∈ DivRing ) |
15 |
|
simplr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑚 ∈ 𝐾 ) |
16 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
17 |
7 16
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → 𝑋 ∈ 𝐵 ) |
18 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑋 ≠ ( 0g ‘ 𝑉 ) ) |
19 |
18 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ≠ ( 0g ‘ 𝑉 ) ) |
20 |
6 17 19
|
3syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ≠ ( 0g ‘ 𝑉 ) ) |
21 |
|
simplr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑋 = ( 𝑚 · 𝑌 ) ) |
22 |
|
simpr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑚 = ( 0g ‘ 𝑆 ) ) |
23 |
22
|
oveq1d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → ( 𝑚 · 𝑌 ) = ( ( 0g ‘ 𝑆 ) · 𝑌 ) ) |
24 |
|
lveclmod |
⊢ ( 𝑉 ∈ LVec → 𝑉 ∈ LMod ) |
25 |
24
|
ad4antr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑉 ∈ LMod ) |
26 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
27 |
7 26
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → 𝑌 ∈ 𝐵 ) |
28 |
|
eldifi |
⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
29 |
28 2
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
30 |
6 27 29
|
3syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
33 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
34 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
35 |
32 3 4 33 34
|
lmod0vs |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑌 ∈ ( Base ‘ 𝑉 ) ) → ( ( 0g ‘ 𝑆 ) · 𝑌 ) = ( 0g ‘ 𝑉 ) ) |
36 |
25 31 35
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → ( ( 0g ‘ 𝑆 ) · 𝑌 ) = ( 0g ‘ 𝑉 ) ) |
37 |
21 23 36
|
3eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑋 = ( 0g ‘ 𝑉 ) ) |
38 |
20 37
|
mteqand |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑚 ≠ ( 0g ‘ 𝑆 ) ) |
39 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
40 |
5 33 39
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ 𝑚 ∈ 𝐾 ∧ 𝑚 ≠ ( 0g ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) ∈ 𝐾 ) |
41 |
14 15 38 40
|
syl3anc |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) ∈ 𝐾 ) |
42 |
|
oveq1 |
⊢ ( 𝑛 = ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) → ( 𝑛 · 𝑋 ) = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) |
43 |
42
|
eqeq2d |
⊢ ( 𝑛 = ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) → ( 𝑌 = ( 𝑛 · 𝑋 ) ↔ 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) ) |
44 |
43
|
adantl |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑛 = ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) ) → ( 𝑌 = ( 𝑛 · 𝑋 ) ↔ 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) ) |
45 |
|
simpr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 = ( 𝑚 · 𝑌 ) ) |
46 |
|
nelsn |
⊢ ( 𝑚 ≠ ( 0g ‘ 𝑆 ) → ¬ 𝑚 ∈ { ( 0g ‘ 𝑆 ) } ) |
47 |
38 46
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ¬ 𝑚 ∈ { ( 0g ‘ 𝑆 ) } ) |
48 |
15 47
|
eldifd |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑚 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝑆 ) } ) ) |
49 |
|
eldifi |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
50 |
49 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
51 |
6 17 50
|
3syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
52 |
32 4 3 5 33 39 12 48 51 30
|
lvecinv |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( 𝑋 = ( 𝑚 · 𝑌 ) ↔ 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) ) |
53 |
45 52
|
mpbid |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) |
54 |
41 44 53
|
rspcedvd |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑋 ) ) |
55 |
1
|
prjsprel |
⊢ ( 𝑌 ∼ 𝑋 ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑋 ) ) ) |
56 |
11 54 55
|
sylanbrc |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 ∼ 𝑋 ) |
57 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
58 |
7 57
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
60 |
56 59
|
r19.29a |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) → 𝑌 ∼ 𝑋 ) |