| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspertr.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 3 |  | prjspertr.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑉 ) | 
						
							| 4 |  | prjspertr.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 5 |  | prjspertr.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 |  | simpllr | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑋  ∼  𝑌 ) | 
						
							| 7 | 1 | prjsprel | ⊢ ( 𝑋  ∼  𝑌  ↔  ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) ) | 
						
							| 8 |  | pm3.22 | ⊢ ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  →  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 10 | 7 9 | sylbi | ⊢ ( 𝑋  ∼  𝑌  →  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 11 | 6 10 | syl | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑛  =  ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  →  ( 𝑛  ·  𝑋 )  =  ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  ·  𝑋 ) ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑛  =  ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  →  ( 𝑌  =  ( 𝑛  ·  𝑋 )  ↔  𝑌  =  ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  ·  𝑋 ) ) ) | 
						
							| 14 |  | simplll | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑉  ∈  LVec ) | 
						
							| 15 | 3 | lvecdrng | ⊢ ( 𝑉  ∈  LVec  →  𝑆  ∈  DivRing ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑆  ∈  DivRing ) | 
						
							| 17 |  | simplr | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑚  ∈  𝐾 ) | 
						
							| 18 |  | simpll | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 19 | 7 18 | sylbi | ⊢ ( 𝑋  ∼  𝑌  →  𝑋  ∈  𝐵 ) | 
						
							| 20 |  | eldifsni | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑋  ≠  ( 0g ‘ 𝑉 ) ) | 
						
							| 21 | 20 2 | eleq2s | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ≠  ( 0g ‘ 𝑉 ) ) | 
						
							| 22 | 6 19 21 | 3syl | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑋  ≠  ( 0g ‘ 𝑉 ) ) | 
						
							| 23 |  | simplr | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 24 |  | simpr | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  𝑚  =  ( 0g ‘ 𝑆 ) ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  ( 𝑚  ·  𝑌 )  =  ( ( 0g ‘ 𝑆 )  ·  𝑌 ) ) | 
						
							| 26 |  | lveclmod | ⊢ ( 𝑉  ∈  LVec  →  𝑉  ∈  LMod ) | 
						
							| 27 | 26 | ad4antr | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  𝑉  ∈  LMod ) | 
						
							| 28 |  | simplr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑌  ∈  𝐵 ) | 
						
							| 29 | 7 28 | sylbi | ⊢ ( 𝑋  ∼  𝑌  →  𝑌  ∈  𝐵 ) | 
						
							| 30 |  | eldifi | ⊢ ( 𝑌  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 31 | 30 2 | eleq2s | ⊢ ( 𝑌  ∈  𝐵  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 32 | 6 29 31 | 3syl | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  𝑌  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 34 |  | eqid | ⊢ ( Base ‘ 𝑉 )  =  ( Base ‘ 𝑉 ) | 
						
							| 35 |  | eqid | ⊢ ( 0g ‘ 𝑆 )  =  ( 0g ‘ 𝑆 ) | 
						
							| 36 |  | eqid | ⊢ ( 0g ‘ 𝑉 )  =  ( 0g ‘ 𝑉 ) | 
						
							| 37 | 34 3 4 35 36 | lmod0vs | ⊢ ( ( 𝑉  ∈  LMod  ∧  𝑌  ∈  ( Base ‘ 𝑉 ) )  →  ( ( 0g ‘ 𝑆 )  ·  𝑌 )  =  ( 0g ‘ 𝑉 ) ) | 
						
							| 38 | 27 33 37 | syl2anc | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  ( ( 0g ‘ 𝑆 )  ·  𝑌 )  =  ( 0g ‘ 𝑉 ) ) | 
						
							| 39 | 23 25 38 | 3eqtrd | ⊢ ( ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  ∧  𝑚  =  ( 0g ‘ 𝑆 ) )  →  𝑋  =  ( 0g ‘ 𝑉 ) ) | 
						
							| 40 | 22 39 | mteqand | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑚  ≠  ( 0g ‘ 𝑆 ) ) | 
						
							| 41 |  | eqid | ⊢ ( invr ‘ 𝑆 )  =  ( invr ‘ 𝑆 ) | 
						
							| 42 | 5 35 41 | drnginvrcl | ⊢ ( ( 𝑆  ∈  DivRing  ∧  𝑚  ∈  𝐾  ∧  𝑚  ≠  ( 0g ‘ 𝑆 ) )  →  ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  ∈  𝐾 ) | 
						
							| 43 | 16 17 40 42 | syl3anc | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  ∈  𝐾 ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 45 |  | nelsn | ⊢ ( 𝑚  ≠  ( 0g ‘ 𝑆 )  →  ¬  𝑚  ∈  { ( 0g ‘ 𝑆 ) } ) | 
						
							| 46 | 40 45 | syl | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ¬  𝑚  ∈  { ( 0g ‘ 𝑆 ) } ) | 
						
							| 47 | 17 46 | eldifd | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑚  ∈  ( 𝐾  ∖  { ( 0g ‘ 𝑆 ) } ) ) | 
						
							| 48 |  | eldifi | ⊢ ( 𝑋  ∈  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 49 | 48 2 | eleq2s | ⊢ ( 𝑋  ∈  𝐵  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 50 | 6 19 49 | 3syl | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑋  ∈  ( Base ‘ 𝑉 ) ) | 
						
							| 51 | 34 4 3 5 35 41 14 47 50 32 | lvecinv | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ( 𝑋  =  ( 𝑚  ·  𝑌 )  ↔  𝑌  =  ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  ·  𝑋 ) ) ) | 
						
							| 52 | 44 51 | mpbid | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑌  =  ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 )  ·  𝑋 ) ) | 
						
							| 53 | 13 43 52 | rspcedvdw | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ∃ 𝑛  ∈  𝐾 𝑌  =  ( 𝑛  ·  𝑋 ) ) | 
						
							| 54 | 1 | prjsprel | ⊢ ( 𝑌  ∼  𝑋  ↔  ( ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵 )  ∧  ∃ 𝑛  ∈  𝐾 𝑌  =  ( 𝑛  ·  𝑋 ) ) ) | 
						
							| 55 | 11 53 54 | sylanbrc | ⊢ ( ( ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  ∧  𝑚  ∈  𝐾 )  ∧  𝑋  =  ( 𝑚  ·  𝑌 ) )  →  𝑌  ∼  𝑋 ) | 
						
							| 56 |  | simpr | ⊢ ( ( ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵 )  ∧  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) )  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 57 | 7 56 | sylbi | ⊢ ( 𝑋  ∼  𝑌  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 58 | 57 | adantl | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  →  ∃ 𝑚  ∈  𝐾 𝑋  =  ( 𝑚  ·  𝑌 ) ) | 
						
							| 59 | 55 58 | r19.29a | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝑋  ∼  𝑌 )  →  𝑌  ∼  𝑋 ) |