| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjsprel.1 |
⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } |
| 2 |
|
prjspertr.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
| 3 |
|
prjspertr.s |
⊢ 𝑆 = ( Scalar ‘ 𝑉 ) |
| 4 |
|
prjspertr.x |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
| 5 |
|
prjspertr.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 6 |
|
simpllr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∼ 𝑌 ) |
| 7 |
1
|
prjsprel |
⊢ ( 𝑋 ∼ 𝑌 ↔ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) ) |
| 8 |
|
pm3.22 |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 10 |
7 9
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 11 |
6 10
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 12 |
|
oveq1 |
⊢ ( 𝑛 = ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) → ( 𝑛 · 𝑋 ) = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) |
| 13 |
12
|
eqeq2d |
⊢ ( 𝑛 = ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) → ( 𝑌 = ( 𝑛 · 𝑋 ) ↔ 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) ) |
| 14 |
|
simplll |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑉 ∈ LVec ) |
| 15 |
3
|
lvecdrng |
⊢ ( 𝑉 ∈ LVec → 𝑆 ∈ DivRing ) |
| 16 |
14 15
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑆 ∈ DivRing ) |
| 17 |
|
simplr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑚 ∈ 𝐾 ) |
| 18 |
|
simpll |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 19 |
7 18
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → 𝑋 ∈ 𝐵 ) |
| 20 |
|
eldifsni |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑋 ≠ ( 0g ‘ 𝑉 ) ) |
| 21 |
20 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ≠ ( 0g ‘ 𝑉 ) ) |
| 22 |
6 19 21
|
3syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ≠ ( 0g ‘ 𝑉 ) ) |
| 23 |
|
simplr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 24 |
|
simpr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑚 = ( 0g ‘ 𝑆 ) ) |
| 25 |
24
|
oveq1d |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → ( 𝑚 · 𝑌 ) = ( ( 0g ‘ 𝑆 ) · 𝑌 ) ) |
| 26 |
|
lveclmod |
⊢ ( 𝑉 ∈ LVec → 𝑉 ∈ LMod ) |
| 27 |
26
|
ad4antr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑉 ∈ LMod ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 29 |
7 28
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → 𝑌 ∈ 𝐵 ) |
| 30 |
|
eldifi |
⊢ ( 𝑌 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
| 31 |
30 2
|
eleq2s |
⊢ ( 𝑌 ∈ 𝐵 → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
| 32 |
6 29 31
|
3syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑌 ∈ ( Base ‘ 𝑉 ) ) |
| 34 |
|
eqid |
⊢ ( Base ‘ 𝑉 ) = ( Base ‘ 𝑉 ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) |
| 36 |
|
eqid |
⊢ ( 0g ‘ 𝑉 ) = ( 0g ‘ 𝑉 ) |
| 37 |
34 3 4 35 36
|
lmod0vs |
⊢ ( ( 𝑉 ∈ LMod ∧ 𝑌 ∈ ( Base ‘ 𝑉 ) ) → ( ( 0g ‘ 𝑆 ) · 𝑌 ) = ( 0g ‘ 𝑉 ) ) |
| 38 |
27 33 37
|
syl2anc |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → ( ( 0g ‘ 𝑆 ) · 𝑌 ) = ( 0g ‘ 𝑉 ) ) |
| 39 |
23 25 38
|
3eqtrd |
⊢ ( ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) ∧ 𝑚 = ( 0g ‘ 𝑆 ) ) → 𝑋 = ( 0g ‘ 𝑉 ) ) |
| 40 |
22 39
|
mteqand |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑚 ≠ ( 0g ‘ 𝑆 ) ) |
| 41 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
| 42 |
5 35 41
|
drnginvrcl |
⊢ ( ( 𝑆 ∈ DivRing ∧ 𝑚 ∈ 𝐾 ∧ 𝑚 ≠ ( 0g ‘ 𝑆 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) ∈ 𝐾 ) |
| 43 |
16 17 40 42
|
syl3anc |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) ∈ 𝐾 ) |
| 44 |
|
simpr |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 45 |
|
nelsn |
⊢ ( 𝑚 ≠ ( 0g ‘ 𝑆 ) → ¬ 𝑚 ∈ { ( 0g ‘ 𝑆 ) } ) |
| 46 |
40 45
|
syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ¬ 𝑚 ∈ { ( 0g ‘ 𝑆 ) } ) |
| 47 |
17 46
|
eldifd |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑚 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝑆 ) } ) ) |
| 48 |
|
eldifi |
⊢ ( 𝑋 ∈ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
| 49 |
48 2
|
eleq2s |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
| 50 |
6 19 49
|
3syl |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑋 ∈ ( Base ‘ 𝑉 ) ) |
| 51 |
34 4 3 5 35 41 14 47 50 32
|
lvecinv |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ( 𝑋 = ( 𝑚 · 𝑌 ) ↔ 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) ) |
| 52 |
44 51
|
mpbid |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 = ( ( ( invr ‘ 𝑆 ) ‘ 𝑚 ) · 𝑋 ) ) |
| 53 |
13 43 52
|
rspcedvdw |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑋 ) ) |
| 54 |
1
|
prjsprel |
⊢ ( 𝑌 ∼ 𝑋 ↔ ( ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ∃ 𝑛 ∈ 𝐾 𝑌 = ( 𝑛 · 𝑋 ) ) ) |
| 55 |
11 53 54
|
sylanbrc |
⊢ ( ( ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) ∧ 𝑚 ∈ 𝐾 ) ∧ 𝑋 = ( 𝑚 · 𝑌 ) ) → 𝑌 ∼ 𝑋 ) |
| 56 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 57 |
7 56
|
sylbi |
⊢ ( 𝑋 ∼ 𝑌 → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) → ∃ 𝑚 ∈ 𝐾 𝑋 = ( 𝑚 · 𝑌 ) ) |
| 59 |
55 58
|
r19.29a |
⊢ ( ( 𝑉 ∈ LVec ∧ 𝑋 ∼ 𝑌 ) → 𝑌 ∼ 𝑋 ) |