| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 | ⊢  ∼   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } | 
						
							| 2 |  | prjspertr.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 3 |  | prjspertr.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑉 ) | 
						
							| 4 |  | prjspertr.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 5 |  | prjspertr.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 6 | 1 | relopabiv | ⊢ Rel   ∼ | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑉  ∈  LVec  →  Rel   ∼  ) | 
						
							| 8 | 1 2 3 4 5 | prjspersym | ⊢ ( ( 𝑉  ∈  LVec  ∧  𝑎  ∼  𝑏 )  →  𝑏  ∼  𝑎 ) | 
						
							| 9 |  | lveclmod | ⊢ ( 𝑉  ∈  LVec  →  𝑉  ∈  LMod ) | 
						
							| 10 | 1 2 3 4 5 | prjspertr | ⊢ ( ( 𝑉  ∈  LMod  ∧  ( 𝑎  ∼  𝑏  ∧  𝑏  ∼  𝑐 ) )  →  𝑎  ∼  𝑐 ) | 
						
							| 11 | 9 10 | sylan | ⊢ ( ( 𝑉  ∈  LVec  ∧  ( 𝑎  ∼  𝑏  ∧  𝑏  ∼  𝑐 ) )  →  𝑎  ∼  𝑐 ) | 
						
							| 12 | 1 2 3 4 5 | prjsperref | ⊢ ( 𝑉  ∈  LMod  →  ( 𝑎  ∈  𝐵  ↔  𝑎  ∼  𝑎 ) ) | 
						
							| 13 | 9 12 | syl | ⊢ ( 𝑉  ∈  LVec  →  ( 𝑎  ∈  𝐵  ↔  𝑎  ∼  𝑎 ) ) | 
						
							| 14 | 7 8 11 13 | iserd | ⊢ ( 𝑉  ∈  LVec  →   ∼   Er  𝐵 ) |