| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjsprel.1 |  |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } | 
						
							| 2 |  | prjspertr.b |  |-  B = ( ( Base ` V ) \ { ( 0g ` V ) } ) | 
						
							| 3 |  | prjspertr.s |  |-  S = ( Scalar ` V ) | 
						
							| 4 |  | prjspertr.x |  |-  .x. = ( .s ` V ) | 
						
							| 5 |  | prjspertr.k |  |-  K = ( Base ` S ) | 
						
							| 6 | 1 | relopabiv |  |-  Rel .~ | 
						
							| 7 | 6 | a1i |  |-  ( V e. LVec -> Rel .~ ) | 
						
							| 8 | 1 2 3 4 5 | prjspersym |  |-  ( ( V e. LVec /\ a .~ b ) -> b .~ a ) | 
						
							| 9 |  | lveclmod |  |-  ( V e. LVec -> V e. LMod ) | 
						
							| 10 | 1 2 3 4 5 | prjspertr |  |-  ( ( V e. LMod /\ ( a .~ b /\ b .~ c ) ) -> a .~ c ) | 
						
							| 11 | 9 10 | sylan |  |-  ( ( V e. LVec /\ ( a .~ b /\ b .~ c ) ) -> a .~ c ) | 
						
							| 12 | 1 2 3 4 5 | prjsperref |  |-  ( V e. LMod -> ( a e. B <-> a .~ a ) ) | 
						
							| 13 | 9 12 | syl |  |-  ( V e. LVec -> ( a e. B <-> a .~ a ) ) | 
						
							| 14 | 7 8 11 13 | iserd |  |-  ( V e. LVec -> .~ Er B ) |