Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) } |
2 |
|
prjspertr.b |
|- B = ( ( Base ` V ) \ { ( 0g ` V ) } ) |
3 |
|
prjspertr.s |
|- S = ( Scalar ` V ) |
4 |
|
prjspertr.x |
|- .x. = ( .s ` V ) |
5 |
|
prjspertr.k |
|- K = ( Base ` S ) |
6 |
1
|
relopabiv |
|- Rel .~ |
7 |
6
|
a1i |
|- ( V e. LVec -> Rel .~ ) |
8 |
1 2 3 4 5
|
prjspersym |
|- ( ( V e. LVec /\ a .~ b ) -> b .~ a ) |
9 |
|
lveclmod |
|- ( V e. LVec -> V e. LMod ) |
10 |
1 2 3 4 5
|
prjspertr |
|- ( ( V e. LMod /\ ( a .~ b /\ b .~ c ) ) -> a .~ c ) |
11 |
9 10
|
sylan |
|- ( ( V e. LVec /\ ( a .~ b /\ b .~ c ) ) -> a .~ c ) |
12 |
1 2 3 4 5
|
prjsperref |
|- ( V e. LMod -> ( a e. B <-> a .~ a ) ) |
13 |
9 12
|
syl |
|- ( V e. LVec -> ( a e. B <-> a .~ a ) ) |
14 |
7 8 11 13
|
iserd |
|- ( V e. LVec -> .~ Er B ) |