Metamath Proof Explorer


Theorem prjsper

Description: The relation used to define PrjSp is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Hypotheses prjsprel.1
|- .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) }
prjspertr.b
|- B = ( ( Base ` V ) \ { ( 0g ` V ) } )
prjspertr.s
|- S = ( Scalar ` V )
prjspertr.x
|- .x. = ( .s ` V )
prjspertr.k
|- K = ( Base ` S )
Assertion prjsper
|- ( V e. LVec -> .~ Er B )

Proof

Step Hyp Ref Expression
1 prjsprel.1
 |-  .~ = { <. x , y >. | ( ( x e. B /\ y e. B ) /\ E. l e. K x = ( l .x. y ) ) }
2 prjspertr.b
 |-  B = ( ( Base ` V ) \ { ( 0g ` V ) } )
3 prjspertr.s
 |-  S = ( Scalar ` V )
4 prjspertr.x
 |-  .x. = ( .s ` V )
5 prjspertr.k
 |-  K = ( Base ` S )
6 1 relopabiv
 |-  Rel .~
7 6 a1i
 |-  ( V e. LVec -> Rel .~ )
8 1 2 3 4 5 prjspersym
 |-  ( ( V e. LVec /\ a .~ b ) -> b .~ a )
9 lveclmod
 |-  ( V e. LVec -> V e. LMod )
10 1 2 3 4 5 prjspertr
 |-  ( ( V e. LMod /\ ( a .~ b /\ b .~ c ) ) -> a .~ c )
11 9 10 sylan
 |-  ( ( V e. LVec /\ ( a .~ b /\ b .~ c ) ) -> a .~ c )
12 1 2 3 4 5 prjsperref
 |-  ( V e. LMod -> ( a e. B <-> a .~ a ) )
13 9 12 syl
 |-  ( V e. LVec -> ( a e. B <-> a .~ a ) )
14 7 8 11 13 iserd
 |-  ( V e. LVec -> .~ Er B )