Description: The relation used to define PrjSp is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prjsprel.1 | |
|
prjspertr.b | |
||
prjspertr.s | |
||
prjspertr.x | |
||
prjspertr.k | |
||
Assertion | prjsper | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | |
|
2 | prjspertr.b | |
|
3 | prjspertr.s | |
|
4 | prjspertr.x | |
|
5 | prjspertr.k | |
|
6 | 1 | relopabiv | |
7 | 6 | a1i | |
8 | 1 2 3 4 5 | prjspersym | |
9 | lveclmod | |
|
10 | 1 2 3 4 5 | prjspertr | |
11 | 9 10 | sylan | |
12 | 1 2 3 4 5 | prjsperref | |
13 | 9 12 | syl | |
14 | 7 8 11 13 | iserd | |