Metamath Proof Explorer


Theorem prjsper

Description: The relation used to define PrjSp is an equivalence relation. (Contributed by Steven Nguyen, 1-May-2023)

Ref Expression
Hypotheses prjsprel.1 ˙=xy|xByBlKx=l·˙y
prjspertr.b B=BaseV0V
prjspertr.s S=ScalarV
prjspertr.x ·˙=V
prjspertr.k K=BaseS
Assertion prjsper VLVec˙ErB

Proof

Step Hyp Ref Expression
1 prjsprel.1 ˙=xy|xByBlKx=l·˙y
2 prjspertr.b B=BaseV0V
3 prjspertr.s S=ScalarV
4 prjspertr.x ·˙=V
5 prjspertr.k K=BaseS
6 1 relopabiv Rel˙
7 6 a1i VLVecRel˙
8 1 2 3 4 5 prjspersym VLVeca˙bb˙a
9 lveclmod VLVecVLMod
10 1 2 3 4 5 prjspertr VLModa˙bb˙ca˙c
11 9 10 sylan VLVeca˙bb˙ca˙c
12 1 2 3 4 5 prjsperref VLModaBa˙a
13 9 12 syl VLVecaBa˙a
14 7 8 11 13 iserd VLVec˙ErB