Description: Two nonzero vectors are equivalent by a nonzero scalar. (Contributed by Steven Nguyen, 31-May-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | prjsprel.1 | |
|
prjspertr.b | |
||
prjspertr.s | |
||
prjspertr.x | |
||
prjspertr.k | |
||
prjspreln0.z | |
||
Assertion | prjspreln0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prjsprel.1 | |
|
2 | prjspertr.b | |
|
3 | prjspertr.s | |
|
4 | prjspertr.x | |
|
5 | prjspertr.k | |
|
6 | prjspreln0.z | |
|
7 | 1 | prjsprel | |
8 | simprl | |
|
9 | simplrl | |
|
10 | eldifsni | |
|
11 | 10 2 | eleq2s | |
12 | 9 11 | syl | |
13 | simplrr | |
|
14 | simpr | |
|
15 | 14 | oveq1d | |
16 | lveclmod | |
|
17 | 16 | ad3antrrr | |
18 | difss | |
|
19 | 2 18 | eqsstri | |
20 | simplrr | |
|
21 | 20 | anassrs | |
22 | 19 21 | sselid | |
23 | eqid | |
|
24 | eqid | |
|
25 | 23 3 4 6 24 | lmod0vs | |
26 | 17 22 25 | syl2anc | |
27 | 13 15 26 | 3eqtrd | |
28 | 12 27 | mteqand | |
29 | nelsn | |
|
30 | 28 29 | syl | |
31 | 8 30 | eldifd | |
32 | 31 | ex | |
33 | simpr | |
|
34 | 32 33 | jca2 | |
35 | 34 | reximdv2 | |
36 | difss | |
|
37 | ssrexv | |
|
38 | 36 37 | mp1i | |
39 | 35 38 | impbid | |
40 | 39 | pm5.32da | |
41 | 7 40 | bitrid | |