Step |
Hyp |
Ref |
Expression |
1 |
|
prjsprel.1 |
|
2 |
|
prjspertr.b |
|
3 |
|
prjspertr.s |
|
4 |
|
prjspertr.x |
|
5 |
|
prjspertr.k |
|
6 |
|
simpllr |
|
7 |
1
|
prjsprel |
|
8 |
|
pm3.22 |
|
9 |
8
|
adantr |
|
10 |
7 9
|
sylbi |
|
11 |
6 10
|
syl |
|
12 |
|
oveq1 |
|
13 |
12
|
eqeq2d |
|
14 |
|
simplll |
|
15 |
3
|
lvecdrng |
|
16 |
14 15
|
syl |
|
17 |
|
simplr |
|
18 |
|
simpll |
|
19 |
7 18
|
sylbi |
|
20 |
|
eldifsni |
|
21 |
20 2
|
eleq2s |
|
22 |
6 19 21
|
3syl |
|
23 |
|
simplr |
|
24 |
|
simpr |
|
25 |
24
|
oveq1d |
|
26 |
|
lveclmod |
|
27 |
26
|
ad4antr |
|
28 |
|
simplr |
|
29 |
7 28
|
sylbi |
|
30 |
|
eldifi |
|
31 |
30 2
|
eleq2s |
|
32 |
6 29 31
|
3syl |
|
33 |
32
|
adantr |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
34 3 4 35 36
|
lmod0vs |
|
38 |
27 33 37
|
syl2anc |
|
39 |
23 25 38
|
3eqtrd |
|
40 |
22 39
|
mteqand |
|
41 |
|
eqid |
|
42 |
5 35 41
|
drnginvrcl |
|
43 |
16 17 40 42
|
syl3anc |
|
44 |
|
simpr |
|
45 |
|
nelsn |
|
46 |
40 45
|
syl |
|
47 |
17 46
|
eldifd |
|
48 |
|
eldifi |
|
49 |
48 2
|
eleq2s |
|
50 |
6 19 49
|
3syl |
|
51 |
34 4 3 5 35 41 14 47 50 32
|
lvecinv |
|
52 |
44 51
|
mpbid |
|
53 |
13 43 52
|
rspcedvdw |
|
54 |
1
|
prjsprel |
|
55 |
11 53 54
|
sylanbrc |
|
56 |
|
simpr |
|
57 |
7 56
|
sylbi |
|
58 |
57
|
adantl |
|
59 |
55 58
|
r19.29a |
|