| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspval.b | ⊢ 𝐵  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 2 |  | prjspval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑉 ) | 
						
							| 3 |  | prjspval.s | ⊢ 𝑆  =  ( Scalar ‘ 𝑉 ) | 
						
							| 4 |  | prjspval.k | ⊢ 𝐾  =  ( Base ‘ 𝑆 ) | 
						
							| 5 |  | fvex | ⊢ ( Base ‘ 𝑣 )  ∈  V | 
						
							| 6 | 5 | difexi | ⊢ ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  ∈  V | 
						
							| 7 | 6 | a1i | ⊢ ( 𝑣  =  𝑉  →  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  ∈  V ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑣  =  𝑉  →  ( Base ‘ 𝑣 )  =  ( Base ‘ 𝑉 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑣  =  𝑉  →  ( 0g ‘ 𝑣 )  =  ( 0g ‘ 𝑉 ) ) | 
						
							| 10 | 9 | sneqd | ⊢ ( 𝑣  =  𝑉  →  { ( 0g ‘ 𝑣 ) }  =  { ( 0g ‘ 𝑉 ) } ) | 
						
							| 11 | 8 10 | difeq12d | ⊢ ( 𝑣  =  𝑉  →  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  =  ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } ) ) | 
						
							| 12 | 11 1 | eqtr4di | ⊢ ( 𝑣  =  𝑉  →  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  =  𝐵 ) | 
						
							| 13 | 12 | eqeq2d | ⊢ ( 𝑣  =  𝑉  →  ( 𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  ↔  𝑏  =  𝐵 ) ) | 
						
							| 14 | 13 | biimpd | ⊢ ( 𝑣  =  𝑉  →  ( 𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  →  𝑏  =  𝐵 ) ) | 
						
							| 15 | 14 | imp | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } ) )  →  𝑏  =  𝐵 ) | 
						
							| 16 | 14 | imdistani | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } ) )  →  ( 𝑣  =  𝑉  ∧  𝑏  =  𝐵 ) ) | 
						
							| 17 |  | eleq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑥  ∈  𝑏  ↔  𝑥  ∈  𝐵 ) ) | 
						
							| 18 |  | eleq2 | ⊢ ( 𝑏  =  𝐵  →  ( 𝑦  ∈  𝑏  ↔  𝑦  ∈  𝐵 ) ) | 
						
							| 19 | 17 18 | anbi12d | ⊢ ( 𝑏  =  𝐵  →  ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑣  =  𝑉  →  ( Scalar ‘ 𝑣 )  =  ( Scalar ‘ 𝑉 ) ) | 
						
							| 21 | 20 3 | eqtr4di | ⊢ ( 𝑣  =  𝑉  →  ( Scalar ‘ 𝑣 )  =  𝑆 ) | 
						
							| 22 | 21 | fveq2d | ⊢ ( 𝑣  =  𝑉  →  ( Base ‘ ( Scalar ‘ 𝑣 ) )  =  ( Base ‘ 𝑆 ) ) | 
						
							| 23 | 22 4 | eqtr4di | ⊢ ( 𝑣  =  𝑉  →  ( Base ‘ ( Scalar ‘ 𝑣 ) )  =  𝐾 ) | 
						
							| 24 |  | fveq2 | ⊢ ( 𝑣  =  𝑉  →  (  ·𝑠  ‘ 𝑣 )  =  (  ·𝑠  ‘ 𝑉 ) ) | 
						
							| 25 | 24 2 | eqtr4di | ⊢ ( 𝑣  =  𝑉  →  (  ·𝑠  ‘ 𝑣 )  =   ·  ) | 
						
							| 26 | 25 | oveqd | ⊢ ( 𝑣  =  𝑉  →  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 )  =  ( 𝑙  ·  𝑦 ) ) | 
						
							| 27 | 26 | eqeq2d | ⊢ ( 𝑣  =  𝑉  →  ( 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 )  ↔  𝑥  =  ( 𝑙  ·  𝑦 ) ) ) | 
						
							| 28 | 23 27 | rexeqbidv | ⊢ ( 𝑣  =  𝑉  →  ( ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 )  ↔  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) ) | 
						
							| 29 | 19 28 | bi2anan9r | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑏  =  𝐵 )  →  ( ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) ) ) | 
						
							| 30 | 16 29 | syl | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } ) )  →  ( ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 ) )  ↔  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) ) ) | 
						
							| 31 | 30 | opabbidv | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } ) )  →  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 ) ) }  =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) | 
						
							| 32 | 15 31 | qseq12d | ⊢ ( ( 𝑣  =  𝑉  ∧  𝑏  =  ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } ) )  →  ( 𝑏  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 ) ) } )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) ) | 
						
							| 33 | 7 32 | csbied | ⊢ ( 𝑣  =  𝑉  →  ⦋ ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  /  𝑏 ⦌ ( 𝑏  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 ) ) } )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) ) | 
						
							| 34 |  | df-prjsp | ⊢ ℙ𝕣𝕠𝕛  =  ( 𝑣  ∈  LVec  ↦  ⦋ ( ( Base ‘ 𝑣 )  ∖  { ( 0g ‘ 𝑣 ) } )  /  𝑏 ⦌ ( 𝑏  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝑏  ∧  𝑦  ∈  𝑏 )  ∧  ∃ 𝑙  ∈  ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥  =  ( 𝑙 (  ·𝑠  ‘ 𝑣 ) 𝑦 ) ) } ) ) | 
						
							| 35 |  | fvex | ⊢ ( Base ‘ 𝑉 )  ∈  V | 
						
							| 36 | 35 | difexi | ⊢ ( ( Base ‘ 𝑉 )  ∖  { ( 0g ‘ 𝑉 ) } )  ∈  V | 
						
							| 37 | 1 36 | eqeltri | ⊢ 𝐵  ∈  V | 
						
							| 38 | 37 | qsex | ⊢ ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } )  ∈  V | 
						
							| 39 | 33 34 38 | fvmpt | ⊢ ( 𝑉  ∈  LVec  →  ( ℙ𝕣𝕠𝕛 ‘ 𝑉 )  =  ( 𝐵  /  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  ∧  ∃ 𝑙  ∈  𝐾 𝑥  =  ( 𝑙  ·  𝑦 ) ) } ) ) |