| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prjspval.b |
⊢ 𝐵 = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) |
| 2 |
|
prjspval.x |
⊢ · = ( ·𝑠 ‘ 𝑉 ) |
| 3 |
|
prjspval.s |
⊢ 𝑆 = ( Scalar ‘ 𝑉 ) |
| 4 |
|
prjspval.k |
⊢ 𝐾 = ( Base ‘ 𝑆 ) |
| 5 |
|
fvex |
⊢ ( Base ‘ 𝑣 ) ∈ V |
| 6 |
5
|
difexi |
⊢ ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ∈ V |
| 7 |
6
|
a1i |
⊢ ( 𝑣 = 𝑉 → ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ∈ V ) |
| 8 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( Base ‘ 𝑣 ) = ( Base ‘ 𝑉 ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( 0g ‘ 𝑣 ) = ( 0g ‘ 𝑉 ) ) |
| 10 |
9
|
sneqd |
⊢ ( 𝑣 = 𝑉 → { ( 0g ‘ 𝑣 ) } = { ( 0g ‘ 𝑉 ) } ) |
| 11 |
8 10
|
difeq12d |
⊢ ( 𝑣 = 𝑉 → ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) = ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) ) |
| 12 |
11 1
|
eqtr4di |
⊢ ( 𝑣 = 𝑉 → ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) = 𝐵 ) |
| 13 |
12
|
eqeq2d |
⊢ ( 𝑣 = 𝑉 → ( 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ↔ 𝑏 = 𝐵 ) ) |
| 14 |
13
|
biimpd |
⊢ ( 𝑣 = 𝑉 → ( 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) → 𝑏 = 𝐵 ) ) |
| 15 |
14
|
imp |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ) → 𝑏 = 𝐵 ) |
| 16 |
14
|
imdistani |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ) → ( 𝑣 = 𝑉 ∧ 𝑏 = 𝐵 ) ) |
| 17 |
|
eleq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑥 ∈ 𝑏 ↔ 𝑥 ∈ 𝐵 ) ) |
| 18 |
|
eleq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝑦 ∈ 𝑏 ↔ 𝑦 ∈ 𝐵 ) ) |
| 19 |
17 18
|
anbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ↔ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( Scalar ‘ 𝑣 ) = ( Scalar ‘ 𝑉 ) ) |
| 21 |
20 3
|
eqtr4di |
⊢ ( 𝑣 = 𝑉 → ( Scalar ‘ 𝑣 ) = 𝑆 ) |
| 22 |
21
|
fveq2d |
⊢ ( 𝑣 = 𝑉 → ( Base ‘ ( Scalar ‘ 𝑣 ) ) = ( Base ‘ 𝑆 ) ) |
| 23 |
22 4
|
eqtr4di |
⊢ ( 𝑣 = 𝑉 → ( Base ‘ ( Scalar ‘ 𝑣 ) ) = 𝐾 ) |
| 24 |
|
fveq2 |
⊢ ( 𝑣 = 𝑉 → ( ·𝑠 ‘ 𝑣 ) = ( ·𝑠 ‘ 𝑉 ) ) |
| 25 |
24 2
|
eqtr4di |
⊢ ( 𝑣 = 𝑉 → ( ·𝑠 ‘ 𝑣 ) = · ) |
| 26 |
25
|
oveqd |
⊢ ( 𝑣 = 𝑉 → ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) = ( 𝑙 · 𝑦 ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝑣 = 𝑉 → ( 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ↔ 𝑥 = ( 𝑙 · 𝑦 ) ) ) |
| 28 |
23 27
|
rexeqbidv |
⊢ ( 𝑣 = 𝑉 → ( ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ↔ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) |
| 29 |
19 28
|
bi2anan9r |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ) |
| 30 |
16 29
|
syl |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ) → ( ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ) ↔ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) ) ) |
| 31 |
30
|
opabbidv |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ) → { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } ) |
| 32 |
15 31
|
qseq12d |
⊢ ( ( 𝑣 = 𝑉 ∧ 𝑏 = ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) ) → ( 𝑏 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ) } ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ) |
| 33 |
7 32
|
csbied |
⊢ ( 𝑣 = 𝑉 → ⦋ ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) / 𝑏 ⦌ ( 𝑏 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ) } ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ) |
| 34 |
|
df-prjsp |
⊢ ℙ𝕣𝕠𝕛 = ( 𝑣 ∈ LVec ↦ ⦋ ( ( Base ‘ 𝑣 ) ∖ { ( 0g ‘ 𝑣 ) } ) / 𝑏 ⦌ ( 𝑏 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝑏 ∧ 𝑦 ∈ 𝑏 ) ∧ ∃ 𝑙 ∈ ( Base ‘ ( Scalar ‘ 𝑣 ) ) 𝑥 = ( 𝑙 ( ·𝑠 ‘ 𝑣 ) 𝑦 ) ) } ) ) |
| 35 |
|
fvex |
⊢ ( Base ‘ 𝑉 ) ∈ V |
| 36 |
35
|
difexi |
⊢ ( ( Base ‘ 𝑉 ) ∖ { ( 0g ‘ 𝑉 ) } ) ∈ V |
| 37 |
1 36
|
eqeltri |
⊢ 𝐵 ∈ V |
| 38 |
37
|
qsex |
⊢ ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ∈ V |
| 39 |
33 34 38
|
fvmpt |
⊢ ( 𝑉 ∈ LVec → ( ℙ𝕣𝕠𝕛 ‘ 𝑉 ) = ( 𝐵 / { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ∧ ∃ 𝑙 ∈ 𝐾 𝑥 = ( 𝑙 · 𝑦 ) ) } ) ) |