| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prjspval.b |  | 
						
							| 2 |  | prjspval.x |  | 
						
							| 3 |  | prjspval.s |  | 
						
							| 4 |  | prjspval.k |  | 
						
							| 5 |  | fvex |  | 
						
							| 6 | 5 | difexi |  | 
						
							| 7 | 6 | a1i |  | 
						
							| 8 |  | fveq2 |  | 
						
							| 9 |  | fveq2 |  | 
						
							| 10 | 9 | sneqd |  | 
						
							| 11 | 8 10 | difeq12d |  | 
						
							| 12 | 11 1 | eqtr4di |  | 
						
							| 13 | 12 | eqeq2d |  | 
						
							| 14 | 13 | biimpd |  | 
						
							| 15 | 14 | imp |  | 
						
							| 16 | 14 | imdistani |  | 
						
							| 17 |  | eleq2 |  | 
						
							| 18 |  | eleq2 |  | 
						
							| 19 | 17 18 | anbi12d |  | 
						
							| 20 |  | fveq2 |  | 
						
							| 21 | 20 3 | eqtr4di |  | 
						
							| 22 | 21 | fveq2d |  | 
						
							| 23 | 22 4 | eqtr4di |  | 
						
							| 24 |  | fveq2 |  | 
						
							| 25 | 24 2 | eqtr4di |  | 
						
							| 26 | 25 | oveqd |  | 
						
							| 27 | 26 | eqeq2d |  | 
						
							| 28 | 23 27 | rexeqbidv |  | 
						
							| 29 | 19 28 | bi2anan9r |  | 
						
							| 30 | 16 29 | syl |  | 
						
							| 31 | 30 | opabbidv |  | 
						
							| 32 | 15 31 | qseq12d |  | 
						
							| 33 | 7 32 | csbied |  | 
						
							| 34 |  | df-prjsp |  | 
						
							| 35 |  | fvex |  | 
						
							| 36 | 35 | difexi |  | 
						
							| 37 | 1 36 | eqeltri |  | 
						
							| 38 | 37 | qsex |  | 
						
							| 39 | 33 34 38 | fvmpt |  |