Metamath Proof Explorer


Theorem prjspval

Description: Value of the projective space function, which is also known as the projectivization of V . (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypotheses prjspval.b B = Base V 0 V
prjspval.x · ˙ = V
prjspval.s S = Scalar V
prjspval.k K = Base S
Assertion prjspval V LVec ℙ𝕣𝕠𝕛 V = B / x y | x B y B l K x = l · ˙ y

Proof

Step Hyp Ref Expression
1 prjspval.b B = Base V 0 V
2 prjspval.x · ˙ = V
3 prjspval.s S = Scalar V
4 prjspval.k K = Base S
5 fvex Base v V
6 5 difexi Base v 0 v V
7 6 a1i v = V Base v 0 v V
8 fveq2 v = V Base v = Base V
9 fveq2 v = V 0 v = 0 V
10 9 sneqd v = V 0 v = 0 V
11 8 10 difeq12d v = V Base v 0 v = Base V 0 V
12 11 1 eqtr4di v = V Base v 0 v = B
13 12 eqeq2d v = V b = Base v 0 v b = B
14 13 biimpd v = V b = Base v 0 v b = B
15 14 imp v = V b = Base v 0 v b = B
16 14 imdistani v = V b = Base v 0 v v = V b = B
17 eleq2 b = B x b x B
18 eleq2 b = B y b y B
19 17 18 anbi12d b = B x b y b x B y B
20 fveq2 v = V Scalar v = Scalar V
21 20 3 eqtr4di v = V Scalar v = S
22 21 fveq2d v = V Base Scalar v = Base S
23 22 4 eqtr4di v = V Base Scalar v = K
24 fveq2 v = V v = V
25 24 2 eqtr4di v = V v = · ˙
26 25 oveqd v = V l v y = l · ˙ y
27 26 eqeq2d v = V x = l v y x = l · ˙ y
28 23 27 rexeqbidv v = V l Base Scalar v x = l v y l K x = l · ˙ y
29 19 28 bi2anan9r v = V b = B x b y b l Base Scalar v x = l v y x B y B l K x = l · ˙ y
30 16 29 syl v = V b = Base v 0 v x b y b l Base Scalar v x = l v y x B y B l K x = l · ˙ y
31 30 opabbidv v = V b = Base v 0 v x y | x b y b l Base Scalar v x = l v y = x y | x B y B l K x = l · ˙ y
32 15 31 qseq12d v = V b = Base v 0 v b / x y | x b y b l Base Scalar v x = l v y = B / x y | x B y B l K x = l · ˙ y
33 7 32 csbied v = V Base v 0 v / b b / x y | x b y b l Base Scalar v x = l v y = B / x y | x B y B l K x = l · ˙ y
34 df-prjsp ℙ𝕣𝕠𝕛 = v LVec Base v 0 v / b b / x y | x b y b l Base Scalar v x = l v y
35 fvex Base V V
36 35 difexi Base V 0 V V
37 1 36 eqeltri B V
38 37 qsex B / x y | x B y B l K x = l · ˙ y V
39 33 34 38 fvmpt V LVec ℙ𝕣𝕠𝕛 V = B / x y | x B y B l K x = l · ˙ y