Metamath Proof Explorer


Theorem prjspval

Description: Value of the projective space function, which is also known as the projectivization of V . (Contributed by Steven Nguyen, 29-Apr-2023)

Ref Expression
Hypotheses prjspval.b B=BaseV0V
prjspval.x ·˙=V
prjspval.s S=ScalarV
prjspval.k K=BaseS
Assertion prjspval VLVecℙ𝕣𝕠𝕛V=B/xy|xByBlKx=l·˙y

Proof

Step Hyp Ref Expression
1 prjspval.b B=BaseV0V
2 prjspval.x ·˙=V
3 prjspval.s S=ScalarV
4 prjspval.k K=BaseS
5 fvex BasevV
6 5 difexi Basev0vV
7 6 a1i v=VBasev0vV
8 fveq2 v=VBasev=BaseV
9 fveq2 v=V0v=0V
10 9 sneqd v=V0v=0V
11 8 10 difeq12d v=VBasev0v=BaseV0V
12 11 1 eqtr4di v=VBasev0v=B
13 12 eqeq2d v=Vb=Basev0vb=B
14 13 biimpd v=Vb=Basev0vb=B
15 14 imp v=Vb=Basev0vb=B
16 14 imdistani v=Vb=Basev0vv=Vb=B
17 eleq2 b=BxbxB
18 eleq2 b=BybyB
19 17 18 anbi12d b=BxbybxByB
20 fveq2 v=VScalarv=ScalarV
21 20 3 eqtr4di v=VScalarv=S
22 21 fveq2d v=VBaseScalarv=BaseS
23 22 4 eqtr4di v=VBaseScalarv=K
24 fveq2 v=Vv=V
25 24 2 eqtr4di v=Vv=·˙
26 25 oveqd v=Vlvy=l·˙y
27 26 eqeq2d v=Vx=lvyx=l·˙y
28 23 27 rexeqbidv v=VlBaseScalarvx=lvylKx=l·˙y
29 19 28 bi2anan9r v=Vb=BxbyblBaseScalarvx=lvyxByBlKx=l·˙y
30 16 29 syl v=Vb=Basev0vxbyblBaseScalarvx=lvyxByBlKx=l·˙y
31 30 opabbidv v=Vb=Basev0vxy|xbyblBaseScalarvx=lvy=xy|xByBlKx=l·˙y
32 15 31 qseq12d v=Vb=Basev0vb/xy|xbyblBaseScalarvx=lvy=B/xy|xByBlKx=l·˙y
33 7 32 csbied v=VBasev0v/bb/xy|xbyblBaseScalarvx=lvy=B/xy|xByBlKx=l·˙y
34 df-prjsp ℙ𝕣𝕠𝕛=vLVecBasev0v/bb/xy|xbyblBaseScalarvx=lvy
35 fvex BaseVV
36 35 difexi BaseV0VV
37 1 36 eqeltri BV
38 37 qsex B/xy|xByBlKx=l·˙yV
39 33 34 38 fvmpt VLVecℙ𝕣𝕠𝕛V=B/xy|xByBlKx=l·˙y