Metamath Proof Explorer


Definition df-prjsp

Description: Define the projective space function. In the bijection between 3D lines through the origin and points in the projective plane (see section comment), this is equivalent to making any two 3D points (excluding the origin) equivalent iff one is a multiple of another. This definition does not quite give all the properties needed, since the scalars of a left vector space can be "less dense" than the vectors (for example, equivocating rational multiples of real numbers). Compare df-lsatoms . (Contributed by BJ and SN, 29-Apr-2023)

Ref Expression
Assertion df-prjsp ℙ𝕣𝕠𝕛 = v LVec Base v 0 v / b b / x y | x b y b l Base Scalar v x = l v y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cprjsp class ℙ𝕣𝕠𝕛
1 vv setvar v
2 clvec class LVec
3 cbs class Base
4 1 cv setvar v
5 4 3 cfv class Base v
6 c0g class 0 𝑔
7 4 6 cfv class 0 v
8 7 csn class 0 v
9 5 8 cdif class Base v 0 v
10 vb setvar b
11 10 cv setvar b
12 vx setvar x
13 vy setvar y
14 12 cv setvar x
15 14 11 wcel wff x b
16 13 cv setvar y
17 16 11 wcel wff y b
18 15 17 wa wff x b y b
19 vl setvar l
20 csca class Scalar
21 4 20 cfv class Scalar v
22 21 3 cfv class Base Scalar v
23 19 cv setvar l
24 cvsca class 𝑠
25 4 24 cfv class v
26 23 16 25 co class l v y
27 14 26 wceq wff x = l v y
28 27 19 22 wrex wff l Base Scalar v x = l v y
29 18 28 wa wff x b y b l Base Scalar v x = l v y
30 29 12 13 copab class x y | x b y b l Base Scalar v x = l v y
31 11 30 cqs class b / x y | x b y b l Base Scalar v x = l v y
32 10 9 31 csb class Base v 0 v / b b / x y | x b y b l Base Scalar v x = l v y
33 1 2 32 cmpt class v LVec Base v 0 v / b b / x y | x b y b l Base Scalar v x = l v y
34 0 33 wceq wff ℙ𝕣𝕠𝕛 = v LVec Base v 0 v / b b / x y | x b y b l Base Scalar v x = l v y